REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR UNIVERSITE DE MAROUA

REPUBLCAMEROON
Peace-Work-Fatherland
MINISTRY OF HIGHER EDUCATION
THE UNIVERSITY OF MAROUA

ECOLE NORMALE SUPERIEUR DE MAROUA (ENSM)

CONCOURS D'ENTREE EN 1^{ERE} ANNEE SESSION DE 2010

Epreuve de : CHIMIE SERIE : CHIMIE

- 1. Qu'est-ce qui différencie les isomères de conformation des isomères de configuration ?
- 2.
- a. Définir les notations Z et E
- b. Les appliquer au cas du but-2-ène
- c. En déduire le plus stable des isomères du but-2-ène
- 3. Un composé renfermant les éléments carbones, hydrogène, et oxygène a une masse molaire de 88g/mol. Il contient 54,5% de carbone et 9,1% d'hydrogène.
 - a. Déterminer sa formule brute
 - b. Ecrire les formules semi-développées des quatre isomères ne possédant chacun qu'une fonction chimique.
 - c. Nommer ces isomères
 - d. Indiquer les types d'isomère présentée, on considérera tous les couples formés par ces isomères.

Données: H=1g/mol; C=12g/mol; O=16g/mol

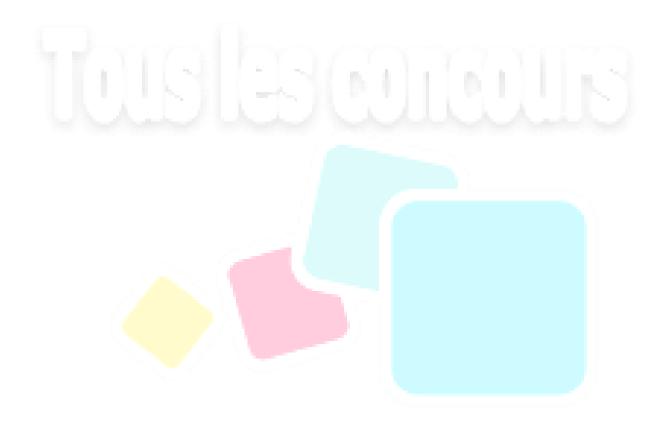
- 4. On réalise la synthèse d'un dipeptide à partir de la glycine ($NH_2 CH_2 COOH$) et d'un acide alpha aminé X.
 - a. Ecrire la formule générale d'un acide alpha aminé.
 - b. La masse molaire du dipeptide est 132g/mol, déterminer la nature du radical R de X.
 - c. Donner la formule semi-développé 4.b et le nom de X
 - d. Sa molécule est-elle chirale ?pourquoi ?Données : H=1g/mol ; C=12g/mol ; O=16g/mol ; N=14g/mol.
- 5. On prépare le dioxygène au laboratoire par chauffage du chlorate de potassium.

- a. Utiliser le nombre d'oxydation pour équilibrer l'équation bilan de cette réaction. ${\rm KClO_3} \to {\rm KCl} + {\rm O_2}$
- b. Quel volume (mesuré dans les conditions normales de température et de pression) de dioxygène peut-on obtenir en chauffant 12,25g de chlorate de potassium ?
- c. Montrer qu'au cours de la réaction d'oxydoréduction suivante : $2H_2S+SO_4\longrightarrow 3S+2H_2O\ ,\ l'élément\ soufre\ joue\ à la fois le rôle d'oxydant et de réducteur.$

Données: $K = 39,1g. \text{ mol}^{-1}$; $Cl = 35,5g. \text{ mol}^{-1}$; $O = 16g. \text{ mol}^{-1}$

- 6. On dispose d'un litre d'une solution aqueuse contenant de l'ammoniac et du chlorure d'ammonium. Cette solution a un PH=9,5 à 25°C et sa concentration molaire est de 0,5mol/l $\{([NH_4^+] + [NH_3]) = 0,5mol. L^{-1}\}$. Le PKa du couple NH_4^+/NH_3 est 9,3.
 - a. Quelles sont les espèces chimiques présentes en solution ?
 - b. Calculer les concentrations [H₃0⁺] et [OH⁻]
 - c. A partir de la constante d'acidité K_A , en déduire le rapport $\frac{[NH_3]}{[NH_4^+]}$
 - d. Déterminer les concentrations de $[NH_3]$ et $[NH_4^+]$
 - e. On ajoute 0,02 mol d'acide chlorhydrique à la solution précédente (sans variation de volume)
 - i. Quelle réaction se produit après l'addition de l'acide?
 - ii. Ecrire son équation bilan
 - iii. Déduire les concentrations [NH₃] et [NH₄⁺]
 - iv. Déterminer la concentration $[H_3O^+]$ à partir du K_A
 - v. En déduire le PH de la solution obtenue
 - vi. Comment appelle t-on cette solution?

7.


a. Les niveaux d'énergies de l'atome d'hydrogène sont donnés par la formule $E_n=-\left(\frac{E_0}{n^2}\right)$ avec $E_0=13$,6 eV, $n\in\mathbb{N}$.

Donner la signification de chaque terme de cette formule.

- b. On considère la transition d'un atome d'hydrogène du niveau d'excitation p au niveau d'excitation n(p>n). Y a-t-il absorption ou émission du photon ?pourquoi ?
- c. Exprimer l'énergie du photon mis en jeu, en fonction de E_0 , n et p.
- d. Calculer E pour une transition du niveau 4 au niveau 2.

- e. Quelle est la longueur d'onde de la radiation?
- f. A quel domaine spectral appartient cette radiation?
- g. On envoie sur des atomes d'hydrogène à l'état fondamental différents photons d'énergies respectives : 10,2eV ; 12,1eV ; 14,6eV. Dire les photons qui peuvent être absorbés. Justifier votre réponse.

Données: Constante de Planck : $h = 6,62.10^{-34}$; $1eV = 1,6.10^{-19}$ J célérité de la lumière dans le vide: $C = 3.10^8$ m/s

