REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR UNIVERSITE DE MAROUA

REPUBLIC OF CAMEROON
Peace-Work-Fatherland
MINISTRY OF HIGHER EDUCATION
THE UNIVERSITY OF MAROUA

ECOLE NORMALE SUPERIEUR DE MAROUA (ENSM)

CONCOURS D'ENTREE EN 1^{ERE} ANNEE SESSION DE 2009

Epreuve de : MATHEMATIQUES

SERIE : MATHEMATIQUES

Exercice 1:

a) Résoudre le système suivant :

$$\begin{cases} \sqrt{x + \frac{1}{y}} + \sqrt{y + \frac{1}{x}} = 2\sqrt{2} \\ (x^2 + 1)y + (y^2 + 1)x = 4xy \end{cases}$$

b) Résoudre l'équation trigonométrique

$$\frac{8\sin^{-2}x + 1}{\cos^{-2}x + \tan^{2}x} = \cot^{2}x + \frac{4}{3}$$

Exercice 2:

Soit le nombre complexe $u = \sqrt{2 - \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$ avec $i^2 = -1$

- a) Calculer u² et u⁴. Calculer le module et un argument de u⁴. En déduire le module et un argument de u
- b) On considère un plan P muni d'un repère orthonormé. A tout point M de coordonnées (x, y), on associe son affixe z = x + iy.
 Déterminer l'ensemble des points M de P pour lesquels le module du produit uz = 8.

Problème:

A. Soit la fonction numérique de la variable réelle x définie par :

$$f(x) = \sqrt{\frac{x^3}{1 - x}}$$

- 1. Dresser le tableau de variation de f.
- 2. Soit Γ_1 la courbe représentative de f dans le plan rapporté à un repère orthonormal $(0, \vec{i}, \vec{j})$.

Déterminer une équation cartésienne de la tangente T à la courbe Γ_1 au point d'abscisse $\frac{1}{2}$. Tracer Γ_1 et la droite T.

- 3. Sur le même graphique, tracer Γ_2 courbe symétrique de Γ_1 par la symétrie orthogonale d'axe Ox.
- 4. Soit $\Gamma = \Gamma_1 \cup \Gamma_2$. Montrer que Γ a pour équation $x(x^2 + y^2) y^2 = 0$ (E).
- B. Interprétationgéométrique:

I est le point de coordonnées (1,0) dans le repère $(0,\vec{1},\vec{j})$, (C) est le cercle de diamètre [OI] et (Δ) est la tangente à C au point I. soit (D) la droite passant par O de coefficient directeur t, $t \in \mathbb{R}$..

1.

- a) Déterminer les coordonnées de M tel que $(C) \cap (D) = \{0, M\}$
- b) Déterminer les coordonnées de M' tel que $\Gamma \cap (D) = \{0, M'\}$
- c) Déterminer les coordonnées de N tel que $\Delta \cap (D) = \{N\}$
- 2. Montrer que $\overrightarrow{OM'} = \overrightarrow{MN}$.
- 3. Déterminer l'intersection de Γ et de (C).
- C. Propriétés géométriques :

Soit M un point de C, N le point d'intersection de (OM) et de (Δ) et M' le point d'intersection de (OM) et Γ . On considère le point P tel que OINP soit un rectangle.

- 1. Montrer que les triangles IMN et OM'P se transforment par une symétrie centrale à déterminer.
- 2. En déduire que le triangle PM'N est rectangle.
- 3. Soit F le symétrique de I par rapport à O. on considère la parabole Ω de foyer F et de directrice (Δ). La droite (FP) coupe (Δ) en R.

Construire géométriquement le point K de Ω qui se projetteorthogonalement en R sur A.