www.touslesconcours.info

CORRIGÉ

EXERCICE 1: On considère la fonction f définie sur]-1; 1] par $f(x) = \sqrt{\frac{1-x}{1+x}}$.

1. On a
$$\lim_{\substack{x \to -1 \\ x > -1}} (1+x) = 0^{+\delta}$$
 et $\lim_{\substack{x \to -1 \\ x > -1}} (1-x) = 2$, donc $\lim_{\substack{x \to -1 \\ x > -1}} \frac{1-x}{1+x} = +\infty$ et $\lim_{\substack{x \to -1 \\ x > -1}} f(x) = +\infty$. Et $\lim_{\substack{x \to 1 \\ x < 1}} \frac{1-x}{1+x} = \frac{0}{2} = 0$.

- 2. La fonction f est continue en 1 puisque $\lim_{\substack{x \to 1 \ x < 1}} \frac{1-x}{1+x} = \frac{0}{2} = f(1) = 0$.
- 3. Pour étudier la dérivabilité de la fonction f en 1, on calcule $\lim_{\substack{x \to 1 \\ x < 1}} \frac{f(x) f(1)}{x 1} = \lim_{\substack{x \to 1 \\ x < 1}} \frac{\sqrt{\frac{1 x}{1 + x}}}{x 1} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{\frac{1 x}{1 + x}} \times \frac{-1}{1 x} = \lim_{\substack{x \to 1 \\$

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{-1}{\sqrt{(1-x)(1+x)}} \cdot \text{Comme } \lim_{\substack{x \to 1 \\ x < 1}} \sqrt{(1-x)(1+x)} = 0^+ \text{, alors } \lim_{\substack{x \to 1 \\ x < 1}} \frac{f(x) - f(1)}{x - 1} = -\infty \text{. Donc la fonction } f \text{ n'est pas } \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = -\infty \text{.}$$

dérivable en 1. Par contre, la courbe représentative de f admet une tangente verticale au point d'abscisse 1.

4. Une équation de la tangente à la courbe représentative de f au point d'abscisse 0 est donnée par :

y = f'(0)(x - 0) + f(0). Pour déterminer f'(0), on calcule la dérivée de f sur] - 1; 1[intervalle sur lequel la fonction est

dérivable comme composée et quotient de fonctions qui le sont et de la forme \sqrt{u} . Et $f'(x) = \frac{u'}{2\sqrt{u}} = \frac{u'}{2} \times \frac{1}{\sqrt{u}} = \frac{u'}{2\sqrt{u}} \times \frac{1}{\sqrt{u}} = \frac{u'}$

$$\frac{-2}{2(1+x)^2} \times \sqrt{\frac{1+x}{1-x}}$$
, d'où $f'(0) = -1$. Ainsi l'équation de la tangente est $y = -1(x) + 1 = -x + 1$.

EXERCICE 2: 1. L'ensemble de définition de f est centré en 0, et pour tout réel x,

 $f(-x) = (-x)^2 - \cos(-x) = x^2 - \cos x = f(x)$. Donc la fonction f est paire.

- 2. Pour tout réel $x > \pi$, $x^2 > \pi^2$ soit $x^2 \cos x > \pi^2 1$, puisque $-1 \le \cos x \le 1$. Or $\pi^2 1 > 0$, donc f(x) > 0.
- 3. La fonction f est dérivable ainsi que sa dérivée car elles sont sommes de fonctions dérivables sur \mathbb{R} .

Pour tout réel x, $f'(x) = 2x + \sin x$ et $f''(x) = 2 + \cos x > 0$ puisque $-1 \le \cos x \le 1$. Donc la fonction

- 4. Comme f''(x) > 0 sur $[0; \pi]$, alors la fonction f' est strictement croissante sur $[0; \pi]$.
- 5. On a f'(0) = 0 et f' strictement croissante sur $[0; \pi]$ implique que pour tout réel x de $[0; \pi]$, f'(x) > f'(0) = 0. Donc $f'(x) \ge 0$ sur $[0; \pi]$.
- 6. Si $f'(x) \ge 0$ sur $[0; \pi]$, alors f est strictement croissante sur $[0; \pi]$.
- 7. La fonction f est continue puisque dérivable et strictement croissante de $[0; \pi]$ dans $[-1; 1 + \pi^2]$.

Comme $0 \in [-1; 1 + \pi^2]$, par le théorème des valeurs intermédiaires, l'équation f(x) = 0 qui est équivalente à l'équation (E) admet une unique solution α sur $[0; \pi]$.

- 8. A l'aide de la calculatrice, on trouve $\alpha = 0.82$ à 10^{-2} près.
- 9. Puisque la fonction f est paire, $-\alpha$ est aussi solution de (E). De plus, par la question 2, il n'existe pas d'autre solution sur \mathbb{R} . Les solutions de (E) sur \mathbb{R} sont α et $-\alpha$.

EXERCICE 3:

On considère la suite numérique (u_n) définie sur \mathbb{N} par $u_0 = -2$ et $u_{n+1} = \frac{1}{2} u_n + 3$.

1. a) En utilisant un raisonnement par récurrence : La propriété P_n est $u_n \le 6$. Initialisation: P_0 est vraie puisque $u_0 = -2 \le 6$.

Hérédité : Supposons P_n vraie pour une valeur de n et montrons que P_{n+1} est vraie : $u_n \le 6$ entraîne $\frac{1}{2}u_n \le 3$ entraîne

 $\frac{1}{2}u_n + 3 \le 6$ soit $u_{n+1} \le 6$. Donc pour tout entier naturel $n, u_n \le 6$ et la suite est majorée par 6.

www.touslesconcours.info

b) On a
$$u_{n+1} - u_n = \frac{1}{2} u_n + 3 - u_n = -\frac{1}{2} u_n + 3$$
. Comme, pour tout entier naturel $n, u_n \le 6$, alors $\frac{1}{2} u_n \le 3$, d'où $-\frac{1}{2} u_n \ge -3$, d'où $-\frac{1}{2} u_n + 3 \ge 0$, alors $u_{n+1} - u_n \ge 0$, et la suite (u_n) est croissante.

- c) Des deux questions précédentes, on peut déduire que la suite converge puisqu'elle est majorée te croissante. Sa limite l vérifie $-2 \le l \le 6$.
- 2. On considère la suite numérique (v_n) définie sur \mathbb{N} par $v_n = u_n 6$.

a) On a
$$v_{n+1} = u_{n+1} - 6 = \frac{1}{2}u_n + 3 - 6 = \frac{1}{2}u_n - 3 = \frac{1}{2}(u_n - 6) = \frac{1}{2}(v_n)$$
. Donc (v_n) est une suite géométrique de raison $\frac{1}{2}$ et le premier terme $v_0 = u_0 - 6 = -8$.

b) Ainsi, pour tout entier naturel
$$n$$
, $v_n = -8\left(\frac{1}{2}\right)^n$. De plus, $v_n = u_n - 6$ implique $u_n = v_n + 6 = -8\left(\frac{1}{2}\right)^n + 6$.

c) Comme la raison de la suite (v_n) est strictement comprise entre -1 et 1, $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} u_n = 6$.

EXERCICE 4:

On considère la suite numérique (u_n) définie sur \mathbb{N} par $u_0 = 0$ et $u_{n+1} = \sqrt{1 + u_n}$.

1. En utilisant un raisonnement par récurrence : La propriété P_n est $0 \le u_n \le 2$. Initialisation: P_0 est vraie puisque $u_0 = 0$ et $0 \le 0 \le 2$.

Hérédité : Supposons P_n vraie pour une valeur de n et montrons que P_{n+1} est vraie : $0 \le u_n \le 2$ entraîne $1 \le 1 + u_n \le 3$ entraîne $1 \le \sqrt{1 + u_n} \le \sqrt{3}$ (car la fonction racine carrée est croissante sur $[0; +\infty[)$, soit $0 < 1 \le u_{n+1} \le \sqrt{3} < 2$. Donc pour tout entier naturel n, $0 \le u_n \le 2$ et la suite est bornée par 0 et 2.

2. En utilisant un raisonnement par récurrence : La propriété P_n est $u_n \le u_{n+1}$. Initialisation: P_0 est vraie puisque $u_1 = 1$, $u_0 = 0$ et 0 < 1.

Hérédité: Supposons P_n vraie pour une valeur de n et montrons que P_{n+1} est vraie: $u_n \le u_{n+1}$ entraîne $1 + u_n \le 1 + u_{n+1}$ entraîne $\sqrt{1 + u_n} \le \sqrt{1 + u_{n+1}}$ (car la fonction racine carrée est croissante sur $[0; +\infty[$), soit $u_{n+1} \le u_{n+2}$. Donc pour tout entier naturel n, $u_n \le u_{n+1}$ et la suite est croissante.

3. Comme la suite (u_n) est croissante et majorée par 2, elle converge vers un réel l tel que $0 \le l \le 2$.

A la limite, $\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = l$, donc l vérifie l'équation : $l = \sqrt{1+l}$. On élève au carré : $l^2 = 1+l$ soit

$$l^2 - 1 - l = 0$$
. Le discriminant $\Delta = 5 > 0$, il y a deux solutions $l_1 = \frac{1 + \sqrt{5}}{2}$ et $l_2 = \frac{1 - \sqrt{5}}{2}$. La solution l_2 n'est pas

comprise entre 0 et 2, donc la limite de la suite est $l = \frac{1+\sqrt{5}}{2}$ (nombre d'or).