CORRECTION DEVOIR SURVEILLE N° 6

BRAIN-PREPA

EXERCICE 1: Partie A: Il s'agit d'un schéma de Bernouilli avec 2n lancers et une probabilité de succès pour

chaque lancer de $\frac{1}{2}$. La probabilité d'obtenir 4 piles en lançant 8 fois la pièce est $= \binom{8}{4} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{3/4} = \frac{70}{2^8} = \frac{35}{128}$ et la

probabilité d'obtenir 6 piles en lançant 12 fois la pièce est $= \binom{12}{6} \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^{12-6} = \frac{924}{2^{12}} = \frac{231}{1024} < \frac{280}{1024} = \frac{35}{128}$; donc on a plus de chance d'obtenir 4 piles en lançant 8 fois la pièce que d'obtenir 6 piles en lançant 12 fois la pièce.

On a P(n) = $\binom{2n}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{n-n} = \binom{2n}{n} \frac{1}{2^{2n}}$; de plus P(n+1) = $\binom{2(n+1)}{n+1} \left(\frac{1}{2}\right)^{n+1} \left(\frac{1}{2}\right)^{2(n+1)(n+1)} = \binom{2(n+1)}{n+1} \frac{1}{2^{2n+2}}$.

D'où, pour $n \in \mathbf{N}^*$, $\frac{P(n+1)}{P(n)} = \frac{\binom{2(n+1)}{n+1}}{\binom{2n}{n}} \frac{1}{2^{2n+2}} = \frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} \times \frac{1}{4} = \frac{(2n+2)(2n+1)}{4(n+1)^2} = \frac{2n+1}{2(n+1)}.$

La loi de probabilité de la variable aléatoire X est une loi binomiale de paramètres 2n et $\frac{1}{2}$; d'où

 $p(X = k) = {2n \choose k} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{n-k}$. L'espérance mathématique de X est égale au produit des paramètres = n.

Partie B: $P(A) = P(\emptyset)$ obtenir deux boules rouges » ou « obtenir deux boules jaunes ») = $P(\emptyset)$ obtenir deux boules

rouges ») + P(« obtenir deux boules jaunes ») = $\frac{\binom{7}{2}}{\binom{10}{2}} + \frac{\binom{3}{2}}{\binom{10}{2}} = \frac{7}{15} + \frac{1}{15} = \frac{8}{15}$. P(B) = 1 - P(A) = $\frac{7}{15}$.

La variable aléatoire X prend les valeurs 0, 1 et 2. On a $P(X = 0) = P(\text{« obtenir deux boules jaunes »}) = \frac{1}{15}$;

 $P(X = 2) = P(\text{``ansatz} \text{ obtenir deux boules rouges "`s)} = \frac{7}{15}$; et $P(X = 1) = P(\text{``ansatz} \text{ obtenir une boule jaune et une boule rouge "`s)} = \frac{7}{15}$

 $\frac{7}{15}$. Son espérance mathématique est E(X) = $0 \times \frac{1}{15} + 1 \times \frac{7}{15} + 2 \times \frac{7}{15} = \frac{7}{5}$.

EXERCICE 2: Partie A: a) On a $f'(x) = (2x + a)e^{x^2 + ax + b}$ et f'(1,5) = 0 d'où a = -3. De plus,

 $f(1,5) = e^{1.5^2 + 1.5a + b} = e^{-1.25}$, d'où $1.5^2 + 1.5a + b = -1.25$ et b = 1.

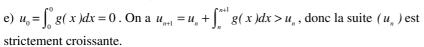
b) La droite d'équation x = 1.5 est un axe de symétrie de la courbe représentative de la fonction f si pour tout x de IR, on a f(1,5+x) = f(1,5-x). On a $x^2 - 3x + 1 = (x-1,5)^2 - 1,25$, d'où $f(1,5+x) = e^{x^2 - 1,25} = f(1,5-x)$.

Partie B : a) $\lim_{x \to \infty} g(x) = +\infty$ car $\lim_{x \to \infty} (x^2 + 3x + 1) = +\infty$ et $\lim_{x \to \infty} e^{-x} = +\infty$. $\lim_{x \to \infty} g(x) = 0$ car $\lim_{x \to \infty} (x^{\alpha} e^{-x}) = 0$ pour α réel positif. b) $g'(x \neq +2 + 2 \neq x = x + 2)$; le signe de cette dérivée est celui de $(-x^2 - x + 2)$. D'où le tableau de variations

X	-∞	-2		1		+∞
g'(x)	_	0	+	0	_	
g(x)	+8	-e ²	<u> </u>	5/e		• 0

d) Comme la fonction g est strictement positive sur IR+, u_n est l'aire de la partie du plan limitée par l'axe des abscisses, la courbe C_g et les droites

d'équation x = 0 et x = n. u_3 est grisée sur le dessin.



f) G'(x) = $(x^2 + 3x + 1)e^{-x}$ donc G est une primitive de g. D'où

 $u_n = G(n) - G(0) = (-n^2 - 5n - 6)e^{-n} + 6$ et $\lim u_n = 6$. L'aire de la partie du

plan limitée par l'axe des abscisses, la courbe C_s et l'axe des ordonnées vaut 6 unités d'aires.

Partie C: a)
$$h'(x \neq 2^{-2}x + c^x e \text{ d'où } h'(\ln(5) \neq 2^{-2}e^{\ln(1.5)} + c^{\ln(1.5)} = 2 \times (5^{-2}) + 15 = 0 \text{ d'où } c = -3;$$

 $\lim_{x \to \infty} h(x) = d = 2 \text{ car } \lim_{x \to \infty} e^x = \lim_{x \to \infty} e^{2x} = 0$

b) Pour résoudre l'équation h(x) = 0, on pose $X = e^x$; l'équation devient $X^2 - 3X + 2 = 0$ qui a deux solutions: $X_1 = 1$ et $X_2 = 2$; d'où les solutions $x_1 = 0$ et $x_2 = \ln 2$.

