JULY 2011

Exercise I (7mks)

- A) Let f be a function defined on]0; $+\infty$ [by $f(x) = x 2 + \frac{1}{2} \ln x$.
- 1) a-let's calculate the limits of f at 0 and at $+\infty$

At 0, we have,
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \left[x - 2 + \frac{1}{2} \ln x \right] = -\infty$$

At
$$+\infty$$
, we have $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left[x-2+\frac{1}{2}\ln x\right] = +\infty$
Thus

 $\lim_{x \to 0} f(x) = -\infty \text{ and } \lim_{x \to +\infty} f(x) = +\infty$

b) Let's calculate f'(x) and give the table of variation of f. $\forall x \in]0; +\infty[, f \text{ is differentiable} \Rightarrow f'(x) = 1 + \frac{1}{2x} = \frac{2x+1}{2x}$

$$\forall x \in]0; +\infty[, f'(x) = \frac{2x+1}{2x}$$

We know from above that $x > 0 \Longrightarrow \forall x \in]0; +\infty[, \frac{2x+1}{2x} > 0]$

Then

$$\forall x \in]0; +\infty[, f'(x) > 0, it's strictly increasing on]0; +\infty[$$

Table of variation

х	(0	$\frac{-1}{2}$	+∞
f'(x)			+	
f(x)		-∞-	- 0-	+∞

2) a) let's show that the equation f(x) = 0, has a unique solution denoted by α on $]0; +\infty[$

х	1.75	1.74	1.73	1.72
f(x)	0.029	0.016	0.004	-0.001

f is defined

and continuous and also strictly increasing in the interval $]0; +\infty[$ $f(]0; +\infty[) =]\lim_{x\to 0} f(x); \lim_{x\to +\infty} f(x)[=]-\infty; +\infty[\text{ and } 0 \in]-\infty; +\infty[,$ Therefore

$$f(x) = 0$$
 has a unique solution α on $]0; +\infty[$

3.Let's give the value of α at 10^{-2} near.

 $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \left[-\frac{7}{8} x^2 + x - \frac{1}{4} x^2 \ln x \right] = 0 = g(0)$

ius 4

$$g(0) = \lim_{x \to 0^+} g(x) = 0$$
, it's continuous at 0

$$\lim_{x\to 0^+} \left[\frac{g(x)-g'(0)}{x-0}\right] = \lim_{x\to 0^+} \left[-\frac{7}{8}x+1-\frac{1}{4}x\ln x\right] = 1$$
 Since $\lim_{x\to 0^+} \left[\frac{g(x)-g'(0)}{x-0}\right] \exists !$, we conclude that g is differentiable at 0

2) a) Let's calculate g'(x) and verify that $g'(x) = xf\left(\frac{1}{x}\right), \forall x > 0$

From above
$$g(x)$$
 is differentiable, thus $g'(x) = \left(-\frac{7}{8}x^2 + x - \frac{1}{4}x^2 \ln x\right)'$

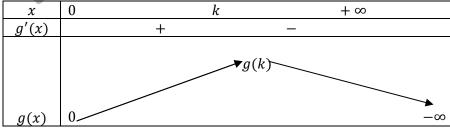
$$= -\frac{7}{4}x + 1 - \frac{1}{2}x(\ln x) - \frac{1}{4}x$$

$$= x\left[-2 + \frac{1}{x} + \frac{1}{2}\ln\left(\frac{1}{x}\right)\right] = xf\left(\frac{1}{x}\right)$$
Thus $g'(x) = x\left[-2 + \frac{1}{x} + \frac{1}{2}\ln\left(\frac{1}{x}\right)\right] = xf\left(\frac{1}{x}\right)$

b)Let's deduce the sign of g'(x) and draw the variation table.

 $\forall x \in]0; k], g'(x) > 0$ it's strictly increasing on]0; k]

 $\forall x \in [k; +\infty[, g'(x) < 0, it's strictly decreasing on [k; +\infty[$



3)Let's equations of tangent to the curve of g at the point of x – coordinate 0 and 1 At the point, x = 0, we have

$$y_0 = g(0)(x - 0) + g(0) = x$$

At the point, x = 1, we have

$$y_1 = g(1)(x-1) + g(1) = -x + 1 + \frac{1}{8} = -x + \frac{9}{8}$$

thus equations are;

$$y_0 = x \text{ and } y_1 = -x + \frac{9}{8}$$

Exercise II

Let's evaluate the following,

$$\int_0^{\sqrt{3}} x^2 \arctan(x) dx. \ Let \begin{cases} u = \arctan(x) \\ v' = x^2 \end{cases} \Longrightarrow \begin{cases} u' = \frac{1}{1+x^2} \\ v = \frac{1}{3}x^3 \end{cases}$$

Using integration by parts we have,

$$\int_0^{\sqrt{3}} x^2 \arctan(x) \, dx = \left[\frac{1}{3} x^3 \arctan(x) \right]_0^{\sqrt{3}} - \frac{1}{3} \int_0^{\sqrt{2}} \frac{x^3}{1 + x^2} \, dx$$

$$= \left[\frac{1}{3} x^3 \arctan(x) \right]_0^{\sqrt{3}} - \frac{1}{3} \int_0^{\sqrt{3}} \left[x - \frac{x}{1 + x^2} \right] \, dx$$

$$= \left[\frac{1}{3} x^3 \arctan(x) \right]_0^{\sqrt{3}} - \frac{1}{3} \left[\frac{1}{2} x^2 - \frac{1}{2} \ln(1 + x^2) \right]_0^{\sqrt{3}}$$

$$= \frac{1}{3} \left(\sqrt{3} \right)^3 \arctan(\sqrt{3}) + \frac{3}{2} - \ln 2$$

$$= \frac{\sqrt{3}\pi}{3} + \frac{3}{2} - \ln 2,$$

Thus we have

$$\int_0^{\sqrt{3}} x^2 \arctan(x) \, dx = \frac{\pi\sqrt{3}}{3} + \frac{3}{2} - \ln 2$$

$$1. \int_0^1 \frac{1}{(1+x^2)^2} dx$$

Let,
$$x = tg(t)$$
, for $x = 0$, $t = 0$ and for $x = 1$, $t = \frac{\pi}{4}$

$$dx = \frac{1}{\cos^2(t)}dt \Longrightarrow \int_0^1 \frac{1}{(1+x^2)^2} dx = \int_0^{\frac{\pi}{4}} \frac{\frac{1}{\cos^2(t)}}{(1+(tg)^2)^2} dt$$

$$\int_0^{\frac{\pi}{4}} \cos^2(t) dt = \int_0^{\frac{\pi}{4}} \frac{1 + \cos 2t}{2} dt = \frac{1}{2} \left[t + \frac{1}{2} \sin t \right]_0^{\frac{\pi}{4}} = \frac{\pi + 2}{8}, \text{ Thus}$$

$$\int_0^1 \frac{1}{(1+x^2)^2} dx = \frac{\pi+2}{8}$$

Exercise III

Let's solve the following differential equations.

1.
$$y' + y = 2\cos(x) + (x+1)e^{-x}$$
.....

* let's determine the characteristic equation of E

We have,
$$y' + y = 0 \Rightarrow \frac{y'}{y} = -1$$

$$\Rightarrow \int \frac{1}{y} dy = \int (-1) dx \Rightarrow \ln y_c - x + k \Rightarrow y_c = e^t e^{-x} = k e^{-x} \ k \in \mathbb{R}.$$

* let's determine the particular solution of

Let
$$y_c = A(x)e^{-x} \Longrightarrow y'_c = A'(x)e^{-x} - A(x)e^{-x}$$
.

Substituting
$$y_c$$
 and y'_c into E , we have
$$A'(x)e^{-x} - A(x)e^{-x} + A(x)e^{-x} = 2\cos(x) + (1+x)e^{-x}$$

$$A'(x)e^{-x} = 2\cos(x) + (x+1)e^{-x} \dots E'$$

Multiplying all through by e^x we have $A'(x) = 2e^x \cos(x) + (1+x)$. Integrating one has

$$\int A'(x)dx = \int [2e^x \cos(x) + (1+x)]dx \implies A(x) = 2 \int e^x \cos(x) dx + x + \frac{x^2}{2} \dots E'$$

From E', we have
$$\int e^x \cos(x) dx = e^x \cos(x) + \int e^x \sin(x) dx$$
$$\int e^x \cos(x) dx = e^x [\cos(x) + \sin(x)] - \int e^x \cos(x) dx + k \Rightarrow 2 \int e^x \cos(x) dx$$
$$= e^x [\cos(x) + \sin(x)] + k$$
$$\Rightarrow \int e^x \cos(x) dx = \frac{e^x}{2} [\cos(x) + \sin(x)] + c \dots E''$$

Substituting E'' into E', $A(x) = e^x[\cos(x) + \sin(x)] + x + \frac{x^2}{2} + c, c \in \mathbb{R}$.

Thus general Solution is $y_p = e^x[\cos(x) + \sin(x)] + \frac{x^2}{2} + x + ke^{-x} + c$, k and $c \in \mathbb{R}$.

$$y_{p+c} = e^x[\cos(x) + \sin(x)] + \frac{x^2}{2} + x + ke^{-x} + c, \quad \forall k, c \in \mathbb{R}.$$

Exercise IV

Given numerical sequences u_n and v_n defined by

$$u_0 = 2, \forall n \in \mathbb{N}$$
, and $v_n = \frac{2}{u_n}$ and $u_{n+1} = \frac{u_n + v_n}{2}$

1) Let's calculate
$$v_0$$
; u_1 ; v_1 ; u_2 ; v_2 ; given the answers in the form of non-reducible fraction. when $n=0$, we have $v_0=\frac{2}{u_0}=\frac{2}{2}=1$ and $u_{0+1}=\frac{u_0+v_0}{2}=\frac{2+1}{2}=1\frac{1}{2}$

when
$$n = 1$$
, we have $v_1 = \frac{2}{u_1} = \frac{2}{\frac{3}{2}} = \frac{4}{3} = 1\frac{1}{3}$ and $u_{1+1} = \frac{u_1 + v_1}{2} = \frac{\frac{3}{2} + \frac{4}{3}}{2} = \frac{\frac{17}{6}}{2} = \frac{17}{12} = 1\frac{\frac{5}{12}}{12}$

when
$$n = 2$$
, we have $v_2 = \frac{2}{u_2} = \frac{2}{\frac{17}{12}} = \frac{2x_{12}}{17} = \frac{24}{17} = 1\frac{7}{17}$

when
$$n = 2$$
, we have $v_2 = \frac{2}{u_2} = \frac{\frac{2}{17}}{\frac{17}{12}} = \frac{2x_{12}}{17} = \frac{24}{17} = 1\frac{7}{17}$

$$v_0 = 1; \ u_1 = 1\frac{1}{2}; \ v_1 = 1\frac{1}{3}; \ u_2 = 1\frac{5}{12}; \ v_2 = 1\frac{7}{17}$$

- 1) Let's show that these sequences are bounded above by 2 and bounded below by 1.ie
- * let's show that $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$

Suppose n = 0 then $u_0 = 2 \implies 1 \le u_0 \le 2$ which is true.

Assume the results to be true for $= (k > 0) \in \mathbb{N}$, then $1 \le u_k \le 2$ which is true.

Let's show the results to be true for $n=(k+1) \in \mathbb{N}$, then $1 \le u_{k+1} \le 2$

$$\Rightarrow 1 + v_k \le v_k + u_k \le 2 + v_k \Rightarrow \frac{1 + v_k}{2} \le \frac{u_k + v_k}{2} \le \frac{2 + v_k}{2} \Rightarrow \frac{1 + \frac{2}{u_k}}{2} \le u_{k+1} \le \frac{2 + \frac{2}{u_k}}{2}$$
From $1 \le u_k \le 2 \Rightarrow \frac{1}{2} \le u_k \le 1 \Rightarrow 1 \le \frac{2}{u_k} \le 2 \Rightarrow 2 \le \frac{2}{u_k} \le 1$

From
$$1 \le u_k \le 2 \Rightarrow \frac{1}{2} \le u_k \le 1 \Rightarrow 1 \le \frac{2}{u_k} \le 2 \Rightarrow 2 \le \frac{2}{u_k} \le 1$$

$$1 \le \frac{2}{u_k} \Longrightarrow 2 \le 1 + \frac{2}{u_k} \Longrightarrow 1 \le \frac{1 + \frac{2}{u_k}}{2} \dots \dots (i).$$

Therefore
$$\frac{2}{u_k} \le 2 \Longrightarrow 2 + \frac{2}{u_k} \le 4 \Longrightarrow \frac{2 + \frac{2}{u_k}}{2} \le 2 \dots \dots (ii). \text{ Combining (i) and (ii) we have,}$$

$$1 + \frac{2}{u_k} \longrightarrow 2 + \frac{$$

$$1 \le \frac{1 + \frac{2}{u_k}}{2} \le u_{k+1} \le \frac{2 + \frac{2}{u_k}}{2} \le 2 \implies 1 \le u_n \le 2$$
. Thus

$$\forall n \in \mathbb{N}; 1 \leq u_n \leq 2$$

* Let's show that $\forall n \in \mathbb{N}$; $1 \leq v_n \leq 2$

Suppose $n_0=0$, $v_0=1$ and $1\leq v_0\leq 2$, which is true. Assume the results to be true for $n_0=k>$ $0 \forall n \in \mathbb{N}$, we have $1 \le v_k \le 2$, which is also true. And let's show the results to be true for $1 \le v_{k+1} \le 1$

We have
$$1 \le \frac{2}{u_k} \Longrightarrow 1 \le \frac{2}{u_{k+1}} \le 2 \Longrightarrow 1 \le v_{k+1} \le 2$$
, which is also true as $v_{k+1} = \frac{2}{u_{k+1}}$.

Hence

$$\forall n \in \mathbb{N}; 1 \leq v_n \leq 2$$

- 2) Let's show that $\forall n \in \mathbb{N}$, $u_{n+1} v_{n+1} = \frac{(u_n v_n)^2 8}{2(u_n + v_n)}$ 3) We have $u_{n+1} = \frac{u_n + v_n}{2}$ and $v_{n+1} = \frac{2}{u_{n+1}} = \frac{4}{u_n + v_n}$
- 4) Then, $u_{n+1} v_{n+1} = \frac{u_n + v_n}{2} \frac{4}{v_n + u_n} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$, therefore $\forall n \in \mathbb{N}, u_{n+1} v_{n+1} = \frac{(u_n v_n)^2 8}{2(u_n v_n)}$

$$\forall n \in \mathbb{N}, u_{n+1} - v_{n+1} = \frac{(u_n - v_n)^2 - 8}{2(u_n - v_n)}$$

- 5) Let's show that $\forall n \in \mathbb{N}, u_n \geq v_n$ From 2) above suppose we have $2(u_n - v_n) > 0$, $(u_n - v_n)^2 - 8 \ge 0$ $\Rightarrow \frac{(u_n - v_n)^2 - 8}{2(u_n - v_n)} \ge 0 \text{ thus } u_n \ge v_n$
- 6) *Let's show that (u_n) is a decreasing sequence. We have $u_{n+1} + u_n = \frac{u_n + v_n}{2} - u_n = \frac{v_n - u_n}{2}$, but we have

$$u_n \ge v_n \Longrightarrow v_n - u_n \le 0 \Longrightarrow \frac{v_n - u_n}{2} \le 0 \Longrightarrow u_{n+1} - u_n \le 0 \text{ and } u_{n+1} \le u_n$$

since $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$ we conclude that u_n is a decreasing sequence

* *Let's show that v_n

is an increasing sequence

We have
$$v_{n+1} - v_n = \frac{2}{v_{n+1}} - v_n = \frac{2}{\frac{v_n + u_n}{2}} - v_n = \frac{4}{u_n + v_n} - v_n = \frac{4 - v_n (v_n - u_n)}{u_n + v_n}$$

But $2 \le u_n + v_n \le 4 \Longrightarrow -4v_n \le -v_n (u_n + v_n) \le -2v_n \Longrightarrow -v_n (u_n + v_n) \le -2v_n$
 $\Longrightarrow 4 - v_n (u_n + v_n) \le 4 - 2v_n \Longrightarrow 4 - v_n (u_n + v_n) \ge 0$
 $\Longrightarrow \frac{4 - v_n (u_n + v_n)}{(u_n + v_n)} \ge 0 \Longrightarrow v_{n+1} - v_n \ge 0 \Longrightarrow v_{n+1} \ge v_n$

Since $\forall n \in \mathbb{N}, v_{n+1} \geq v_n$, we conclude that v_n is an increasing sequence

- 6)Let's show that $\forall n \in \mathbb{N}$; $u_n v_n \le 1$ and deduce that $(u_n v_n)^2 \le (u_n v_n)$ We had $1 \le u_n \le 2 \dots (i)$ and $1 \le v_n \le 2 \implies -2 \le -v_n \le -1 \dots (ii)$
- $(i) + (ii) \Rightarrow -1 \le u_n v_n \le 1 \Rightarrow u_n v_n \le 1$...(iii) multiplying through by $u_n v_n$ we have

$$(u_n - v_n)(u_n - v_n) \le (u_n - v_n) \Longrightarrow (u_n - v_n)^2 \le (u_n - v_n) \dots (iv_n)^2$$

show that $\forall n \in \mathbb{N}$, $u_{n+1} - v_{n+1} = \frac{1}{4}(u_n - v_n)$,

We have had $2 \le u_n + v_n \le 4 \Rightarrow 4 \le 2(u_n + v_n) \le 8$, multiplying by 2.

Dividing by 8, we have $\frac{1}{8} \le \frac{1}{\frac{1}{2}(u_n - v_n)} \le \frac{1}{4}$ considering the RHS and multiplying it by $(u_n - v_n)$ we

$$\text{have } \frac{(u_n-v_n)}{\frac{1}{2}(u_n+v_n)} \leq \frac{1(u_n-v_n)}{4} \text{ but } u_n-v_n \geq 0 \Longrightarrow u_{n+1}-v_{n+1} \leq \frac{1(u_n-v_n)}{4}$$

$$\forall n \in \mathbb{N}; we \ have \ u_{n+1} - v_{n+1} \leq \frac{(u_n - v_n)}{4}$$

b) Let's show that $\forall n \in \mathbb{N}$; $u_n - v_n \leq \frac{1}{4n}$

As k varies from 0 to n, we have $u_1-v_1 \leq \frac{(u_0-v_0)}{4}$, $u_2-v_2 \leq \frac{1(u_1-v_1)}{4}$

$$u_{n-1} - v_{n-1} \le \frac{1}{4} (u_{n-2} - v_{n-2})$$

$$u_n - v_n \le \frac{(u_{n-1} - v_{n-1})}{4}$$

Multiplying each member by its self we've $u_n - v_n \le \left[\left(\frac{1}{4} \right)^n (u_0 - v_0) = \left(\frac{1}{4} \right)^n (2 - 1) \right]$ Therefore $\forall n \in \mathbb{N}; \ u_n - v_n \le \frac{1}{4^n}$

8) let's show that u_n and v_n converge to the same limits

We have $\lim_{n\to+\infty} (u_n - v_n) = \lim_{n\to+\infty} (\frac{1}{4^n}) \Longrightarrow \lim_{n\to+\infty} u_n - \lim_{n\to+\infty} v_n = 0$ and we get $\lim\nolimits_{n\to+\infty}u_n=\lim\nolimits_{n\to+\infty}v_n$

