COMPETITIVE ENTRANCE

2014

SESSION

Department: Civil Engineering and Forestry Techniques, Electrical and Power Engineering, Mechanical Engineering and Computer Science

1st Cycle

Option: ALL

Paper 2: Mathematics

Duration 3hours

1. If $\left|\frac{2x+5}{x-1}\right| < 1$, then the set of values of x that satisfies it is:

A)
$$-3 < x < 4$$

B)
$$-18 < x < -4$$

A)
$$-3 < x < 4$$
 B) $-18 < x < -4$ C) $-6 < x < \frac{4}{3}$ D) $x < \frac{4}{3}$

 $\frac{4}{3}$ and x < -6

2. The value of x if $32^x = 0.25$ is

A)
$$\frac{2}{3}$$

B)
$$\frac{5}{2}$$

C)
$$\frac{2}{r}$$

D)

3. $f(x) \equiv x^3 - 2x^2 - 11x + 52$ is exactly divisible by: A) x - 5 B) x + 4 C) 5x - 6

A)
$$x - 5$$

B)
$$x + 4$$

(C)
$$5x - 6$$

D)

4. If
$$\left(\frac{x}{(x-4)(x-1)}\right) \equiv \frac{a}{3(x-4)} - \frac{1}{3(x-1)}$$
 then a is:

D) -4

4. If $\left(\frac{x}{(x-4)(x-1)}\right) \equiv \frac{a}{3(x-4)} - \frac{1}{3(x-1)}$ then a is: A) 1 B) -1 C) 4 D)

5. If $\frac{x^3}{(x+1)(x-3)} = px + p + \frac{1}{4(x+1)} + \frac{27}{4(x-3)}$ then p and q are respectively: A) 1, 2 B) 2, 1 C) -2, 1 D)

6. $x = 3 - tan\theta$, $y = 3cos\theta$ in terms of x and y only: A) $y^2 = \frac{9}{x^2 - 6x + 10}$ B) $y^2 = \frac{9}{x^2 + 6x + 10}$ C) $y = \frac{9}{x^2 - 6x - 10}$ D) $y = \frac{9}{x^2 - 6x - 10}$

$$(C)$$
 -2, 1

D) 1, -2

A)
$$y^2 = \frac{9}{x^2 - 6x + 10}$$

$$B) y^2 = \frac{9}{x^2 + 6x + 10}$$

C)
$$y = \frac{9}{x^2 - 6x - 10}$$
 D

- 7. The point (-1,2) on the curve x = t, $y = t^3 3t$ and is:
 - of these.
 - A) Minimum point B) maximum point
- C) point of inflexion D) none

Questions 8 and 9 are answer using the data on question 8

8. A particle of mass mkg falls from rest under gravity in a medium which the resistance is of magnitude $\frac{mgv^4}{c^4}$ where v is the speed of the particle and c is a constant. The time the particle takes to attain a speed of $\frac{c}{2}ms^{-1}$ is:

A)
$$t = \frac{c}{2g} \left[\ln 3 + 2tan^{-1} \left(\frac{1}{2} \right) \right]$$
 B) $t = \frac{c}{2g} \left[\ln 2 + 3tan^{-1} \left(\frac{1}{2} \right) \right]$

B)
$$t = \frac{c}{2g} \left[\ln 2 + 3tan^{-1} \left(\frac{1}{2} \right) \right]$$

C)
$$t = \frac{c}{8a} \left[\ln 3 + 2tan^{-1} \left(\frac{1}{2} \right) \right]$$
 D) $t = \frac{c}{4a} \left[\ln 3 + 2tan^{-1} \left(\frac{1}{2} \right) \right]$

D)
$$t = \frac{c}{4g} \left[\ln 3 + 2tan^{-1} \left(\frac{1}{2} \right) \right]$$

9. If g = 10 and c = 2, the time for the speed $\frac{c}{2}ms^{-1}$ to be obtained will now

- A) 5.48
- B) 8.08
- C) 1.48
- D) 2.78

10.
$$\int_0^{-2} \frac{1}{1-x} dx$$
 is A) not possible B) $-\ln 3$ $-\frac{1}{2} \ln 3$

- C) ln 3
- D)

$$-\frac{1}{2}$$
 III 3

- 11. $\int_0^1 \frac{1}{1+a^2x^2} dx = \frac{\pi}{4}$ Then the value of a is: A) 1
- B) -1

D) $-\frac{\pi}{4}$

12. $\int \sin^4 \theta d(\sin \theta)$ is the same as integrating wrt θ is:

- A) $sin^4\theta cos\theta d\theta$
- B) $sin^5\theta cos\theta$
- C) $sin^3\theta cos\theta$
- D)

none of the above

13. The eight term of a GP is 256 and the first term is 2, its common ratio is

A) 7

- B)2
- C) 128
- D) 128

14. A group of 2 boys and 3 girls is to be chosen from 5boys and 4girls. If one girl refuses to serve in the same committee as one particular boy, the number of possible groups are:

- A) 40
- B) 12

C) 10

D) 28

15. Which of the following is not an equation of a circle?

- A) $x^2 + y^2 x = 0$
- B) $x^2 + 2y^2 + x 2y = 0$
- C) $3x^2 + 3y^2 = 1$
- D) $x^2 + y^2 6x 8y = 2$

16. When two circles with centers C_1 and C_2 and radii r_1 and r_2 respectively touch externally C_1C_2 is

A) $r_1^2 + r_2^2$

- B) $r_1 + r_2$
- C) $|r_1 r_2|$ D)

 r_1r_2

17. If z is any cube root of unity, the value of $z^2 + z$ is

2	A) 1	B) 0		C) -1	D)
18. The sum to infinity of a GP is 5times its first term. The common ratio is:					
	A) 1	B) 1/5	C)-4		D) 4/5
19. The Cartesian equation of the curve defined parametrically by $x = 2\sin\theta$, $y = \cos^2\theta$ is:					
A) $4y + x^2 - 4 = 0$ B) $y + 4x^2 - 4 = 0$ C) $4y^2 + x^2 - 4 = 0$ D) $y^2 + x^2 = 0$					
20. The probability function of a discrete random variable X is given by:					
f(x) = K(3x + 1), x = 0, 1, 2, 3.					
1/2		of K is: A) 1/11	B) 1/22	C) 1/44	D)
41/	21. <i>E</i> (<i>X</i>) is:	A) 24/11	B) 44/22	C) 43/22	D)
22. What is the exact value of the logarithm of 8 to base 64?					
	A) 2	B) ½	C) 6		D) 8
23. Expressing $1 + \log_{10} 3$ as a single logarithm gives:					
log	$A)\log_{10} 3$ $\log_{10} \left(\frac{3}{10}\right)$	B) log ₁₀ 3	C) le	og ₁₀ 4	D)
24. An AP has 12terms. If its 5 th term is 7 and it's common difference is 6, then the sum of the AP is:					
	A) 300	B) 396	C) 1	92	D) 196
	25. The limits	s of $\frac{x^3 - 3x^2 + 3}{x - 1}$ at 1 is	s: A) 0 B) 12	C) -3	D) 3