SOLUTIONS

JULY 2009

Exercise I (4mks)

We are given two sequences (U_n) defined by $U_0=2$, $U_1=3$ and $U_n=\frac{4U_{n-1}-U_{n-2}}{3}$, and (V_n) defined by $V_n=U_n-U_{n-1}$, where $n\in\mathbb{N}^*$

a) Let's show that (V_n) is a geometrical sequence and determine the first term and the common ratio.

*We have
$$U_n = \frac{4U_{n-1} - U_{n-2}}{3} \dots \dots \dots \dots (i), V_n = U_n - U_{n-1}$$
 , $n \in \mathbb{N} \dots \dots (ii)$.

Substituting equation (i) into equation (ii) gives $V_n = \frac{4U_{n-1}-U_{n-2}}{3} - U_{n-1} = \frac{U_{n-1}-U_{n-2}}{3} = \frac{1}{3}V_{n-1}$... (iv) From

- (iii). Therefore, $V_n = \frac{1}{3}V_{n-1}$
- * For n=1, and substituting in (ii) gives $V_1=U_1-U_0=3-2=1$
- * From (iv) the common ratio is $\frac{1}{3}$

Therefore

From
$$V_n$$

$$= \frac{1}{3}V_{n-1}shows that V_n is a gp. first term 1, common ratio \frac{1}{3}$$

b) Let's calculate the general term in terms of n.

Generally we have $V_n=ar^n$, $a=V_1=first\ term$, $r=\frac{1}{3}common\ ratio\ and\ substituting\ from\ (a)gives$ $V_n=ar^n=V_1r^n=1.\left(\frac{1}{3}\right)^n=3^{-n}.$

Therefore

General term
$$V_n$$

= 3^{-n} , $\forall n \in \mathbb{N}$

c) Let's calculate $S_n = V_1 + V_2 + V_3 + \dots + V_n$ in terms of n

We have
$$S_n = V_1 + V_2 + \cdots + V_{n-1} + V_n = (U_1 - U_0) + (U_2 - U_1) + \cdots + U_n - U_{n-1}$$

$$= U_n - U_0 = \frac{a(1-r^n)}{1-r} = \frac{V_1(1-r^n)}{1-r} = \frac{1\left(1-\left(\frac{1}{3}\right)^n\right)}{1-\frac{1}{3}} = \frac{1}{2}(3-3^{1-n})$$

$$S_n = \frac{1}{2}(3-3^{1-n}),$$

Therefore,

d) Let's show that the sequence (U_n) , converge and specify it's limit.

$$S_n = U_n - U_0 = \frac{1}{2}(3 - 3^{1-n}), \text{ hence } U_n = 2 + \frac{1}{2}(3 - 3^{1-n}) = \frac{1}{2}(7 - 3^{1-n})$$

$$U_{n+1} = \frac{1}{2}(7 + 3^{1-(1+n)}) = \frac{1}{2}(7 + 3^{-n}), U_{n+1} - U_n = 3^{-n} > 0.... \text{ (e)}, \\ \therefore U_n \text{ is strictly increasing.}$$

*
$$\lim_{n\to\infty} U_n = \lim_{n\to\infty} \left[\frac{1}{2}(7+3^{1-n})\right] = \frac{7}{2}$$
(f)

since
$$U_n$$
 is strickly increasing and $\lim_{n\to+\infty}U_n=rac{7}{2}$, U_n converges to $rac{7}{2}$

Therefore,

Exercise II (3mks)

1) Let's evaluate, $\int_0^{\cosh^{-1}(2)} \frac{\tanh x}{1+\cosh x} dx$, given that $u = 1 + \cosh x$ leaving our answer in natural logarithm.

$$\tanh x = \frac{\sinh x}{\cosh x}$$
.

Let
$$U(x) = 1 + \cosh(x) = 1 + \frac{e^x + e^{-x}}{2}$$
, then $U(0) = 1 + \frac{e^0 + e^{-0}}{2} = 2$ and

 $U(\cosh^{-1}(x)) = 1 + \cosh(\cosh^{-1}(x)) = 3$, but $U - 1 = \cosh(x)$ and

$$dU = \sinh(x)dx$$

$$H = \int_0^{\cosh^{-1} x} \frac{\tanh x}{1 + \cosh x} dx = \int_2^3 \frac{\sinh x}{\cosh x (1 + \cosh x)} dx$$

$$= \int_2^3 \frac{dU}{(U - 1)U} = \int_2^3 \left(\frac{1}{U - 1} - \frac{1}{U}\right) dU \text{ by partial fractions}$$

$$H = [\ln|U - 1|]_2^3 - [|\ln U|]_2^3$$

$$= (\ln 2 - \ln 1) - (\ln 3 - \ln 2)$$

$$=\ln\frac{4}{3}$$

$$H = \ln \frac{4}{3}$$

2) Let's prove that $\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$ and hence or otherwise show that $\int_0^{\frac{1}{2}} \tanh^{-1}x dx = \frac{1}{4} \ln\left[\frac{27}{16}\right]$

*Let $y = \tanh^{-1}(x)$ then we have $x = \tanh y$ and $\operatorname{sech}^2(y) \frac{dy}{dx} = 1$ but

$$sech^{2}(y) = 1 - tanh^{2}(y)$$
 Therefore $\frac{dy}{dx} = \frac{d}{dx}(tanh^{-1}x) = \frac{1}{sech^{2}(y)} = \frac{1}{1 - tanh^{2}(y)} = \frac{1}{1 - x^{2}}$

* By using integration by parts, let's show that $\int_0^{\frac{1}{2}} \tanh^{-1}(x) dx = \frac{1}{4} \ln \left[\frac{27}{16} \right]$

We let
$$\begin{cases} v(x) = \tanh^{-1}(x) \\ u'(x) = 1 \end{cases} \Longrightarrow \begin{cases} v'(x) = \frac{1}{(1-x^2)} \\ u(x) = x \end{cases}$$

$$\Rightarrow \int_0^{\frac{1}{2}} \tanh^{-1}(x) dx = \left[x \tanh^{-1}(x) \right]_0^{\frac{1}{2}} - \frac{1}{2} \int_0^{\frac{1}{2}} \left[-\frac{2x}{(1-x^2)} \right] dx$$

$$= \frac{1}{2} \tanh^{-1}\left(\frac{1}{2}\right) + \frac{1}{2} \left[\ln|1 - x^2| \right]_0^{\frac{1}{2}} = \frac{1}{2} \tanh^{-1}\left(\frac{1}{2}\right) + \frac{1}{2} \ln\left(\frac{3}{4}\right)$$

$$= \frac{1}{2} \cdot \frac{1}{2} \ln\left[\frac{1+\frac{1}{2}}{1-\frac{1}{2}} \right] + \frac{1}{2} \ln\left(\frac{3}{4}\right) = \frac{1}{4} \ln(3) + \frac{1}{2} \ln\left(\frac{3}{4}\right)$$

$$= \frac{1}{4} \left[\ln 3 + 2 \ln\left(\frac{3}{4}\right) \right] = \frac{1}{4} \left[\ln 3 + \ln\left(\frac{9}{16}\right) \right] = \frac{1}{4} \ln\left[\frac{27}{16} \right]$$

Therefore

$$\frac{d(\tanh^{-1}(x))}{dx} = \frac{1}{(1-x^2)} \quad and \int_0^{\frac{1}{2}} \tanh^{-1}(x) dx = \frac{1}{4} \ln\left[\frac{27}{16}\right]$$

Exercise III (4mks)

Let's determine the Cartesian equation of the plane, τ passing through;

a) P(-2; 6; 7) and has a normal vector $\vec{n}(0; 3; 0)$:

Let M(x; y; z) be a point on the plane, then $\overrightarrow{PM} = \begin{bmatrix} x+2\\y-6\\z-7 \end{bmatrix}$, $\overrightarrow{n} = \begin{bmatrix} 0\\3\\0 \end{bmatrix}$, \overrightarrow{PM} is perpendicular to τ hence.

Implying that
$$\overrightarrow{PM}$$
. $\overrightarrow{n} = \overrightarrow{0} \leftrightarrow \begin{bmatrix} x+2\\y-6\\z-7 \end{bmatrix}$. $\begin{bmatrix} 0\\3\\0 \end{bmatrix} = 3(y-6) = 0$.

Thus
$$y = 6$$

b) P(-6; 10; 16) And its perpendicular to the right hand side of AB.

Given,
$$\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$$
; $B \begin{bmatrix} 3 \\ -3 \\ 2 \end{bmatrix}$; $AB = \begin{bmatrix} 2 \\ -3 \\ -3 \end{bmatrix}$; $LetM \begin{bmatrix} x \\ y \\ z \end{bmatrix}$; then $\overrightarrow{PM} = \begin{bmatrix} x+6 \\ y-10 \\ z-16 \end{bmatrix}$, τ is perpendicular to AB hence to \overrightarrow{PM} .

Thus
$$PM.AB = 0 \Rightarrow \begin{bmatrix} x+6 \\ y-6 \\ z-16 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \\ -3 \end{bmatrix} = 0$$
 giving us, $2(x+6) - 3(y-10) - 3(z-16) = 0$

Thus

Cartesian Equation of the plane is
$$2x - 3y - 3z + 90 = 0$$

Exercise iv (4mks)

1) Let's find the square root a + bi of the complex number $Z_1 = 5 + 12i$, \sqrt{z}

$$\begin{cases} a^2 + b^2 = |z_1| \\ a^2 - b^2 = Re(z_1) \Leftrightarrow \begin{cases} a^2 + b^2 = 13 \dots (i) \\ a^2 - b^2 = 5 \dots (ii) \\ 2ab = 11 \dots (iii) \end{cases}$$

$$(i) + (ii) = 2a^2 = 18 \Longrightarrow a = \pm 3$$

$$(i) - (ii) = 2b^2 = 8 \Leftrightarrow b = \pm 2$$
 Thus

$$z_A = 3 + 2i \ and z_B = -3 - 2i$$

2) Let's find the modulus and argument of the complex number $z_2 = \frac{(1+i)^2}{(-1+i)^4}$

$$\begin{split} z_2 &= (1+i)^2 (-1+i)^{-4} = \sqrt{2} \left(\cos \frac{\pi}{4} + \sin \frac{\pi}{4} \right)^2 \sqrt{2} \left(\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right)^{-4} \\ &= \left[\sqrt{2} \left(\cos \frac{\pi}{4} + \sin \frac{\pi}{4} \right) \right]^2 \left[\sqrt{2} \left(\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right) \right]^{-4} \\ &= 2 \left(\cos \frac{\pi}{2} + \sin \frac{\pi}{2} \right) \frac{1}{4} (\cos \pi + \sin \pi) = \frac{1}{2} i (-1) \end{split}$$

Therefore

$$z_2 = -\frac{1}{2}i$$

3) Let's calculate $z_3 z_3^*$ and $\frac{z_3}{z_3^*}$ if $z_3 = 1 + i\sqrt{3}$

*We have
$$z_3 z_3^* = (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1 + 3 = 4$$

*We have
$$\frac{z_3}{z_3^*} = \frac{(1+i\sqrt{3})}{(1-i\sqrt{3})} = \frac{(1+i\sqrt{3})(1+i\sqrt{3})}{(1-i\sqrt{3})(1+i\sqrt{3})} = -\frac{1}{2} + i\frac{\sqrt{3}}{4}$$
,

Therefore,

$$z_3 z_3^* = 4$$
 and $\frac{z_3}{z_3^*} = -\frac{1}{2} + i \frac{\sqrt{3}}{4}$

Exercise v (3mks)

Let's calculate the following quantities

$$a) \int \frac{3x+7}{x^2+x+1} dx$$

$$\partial \text{ and } \varphi \text{ Therefore } \int \frac{3x+5}{x^2+x+1} dx = \int \frac{\frac{3}{2}(2x+1)+\frac{7}{2}}{x^2+x+1} dx = \int \frac{\frac{3}{2}(2x+1)}{x^2+x+1} dx + \int \frac{\frac{7}{2}}{x^2+x+1} dx$$
$$= \frac{3}{2} \ln(x^2+x+1) + \frac{7}{2} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + C, C \in \mathbb{R}.$$

Thus,

$$\int \frac{3x+5}{x^2+x+1} dx = \frac{3}{2} \ln(x^2+x+1) + \frac{7}{2} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}}\right) + C, C \in IR$$

b)
$$\int \frac{3x+7}{\sqrt{-2x^2+x+1}} dx$$

Let $3x + 7 = \gamma(-2x^2 + x + 1)' + \rho (\gamma, \rho \in \mathbb{R})$

$$= \gamma(-4x + 1) + \rho \text{, therefore } \begin{cases} \rho = \frac{-3}{4} \\ \gamma = \frac{31}{4} \end{cases}$$
 by equating coefficients and solving for $\gamma \& \rho$.

$$\int \frac{3x+7}{\sqrt{-2x^2+x+1}} dx = \int \frac{\frac{-3}{4}(-4x+1) + \frac{31}{4}}{\sqrt{-2x^2+x+1}} dx = \frac{-3}{4} \int \frac{(-4x+1)}{\sqrt{-2x^2+x+1}} dx + \frac{31}{4} \int \frac{1}{\sqrt{-2x^2+x+1}} dx = -\frac{3}{4} A + \frac{31}{4} B$$

Let $U^2 = -2x^2 + x + 1$, then 2UdU = (-4x + 1)dx substituting in A gives us

$$\frac{-3}{4}A = -\frac{3}{4}\int \frac{2UdU}{\sqrt{U^2}} = -\frac{3}{4}\int 2dU = -\frac{3}{2}U + K' = -\frac{3}{2}\sqrt{-2x^2 + x + 1} + K'$$

$$\frac{31}{4}B = \frac{31}{4}\int \frac{1}{\sqrt{-2x^2+x+1}} dx = \frac{31}{4\sqrt{2}}\int \frac{1}{\sqrt{\frac{9}{16}-\left(x-\frac{1}{6}\right)^2}} dx$$
, by completing the square

$$= \frac{31}{4\sqrt{2}} \int \frac{1}{\sqrt{\left[\frac{3}{4}\right]^2 + \left[x - \frac{1}{4}\right]^2}} dx = \frac{31}{4\sqrt{2}} \arcsin\left(\frac{4x - 1}{3}\right) + K''$$

$$\int \frac{3x+7}{\sqrt{-2x^2+x+1}} dx = \frac{-3}{4} \sqrt{-2x^2+x+1} + \frac{31}{4\sqrt{2}} \sin^{-1} \left(\frac{4x-1}{3}\right) + K, K$$
$$= K' + K'' \epsilon \mathbb{R}$$

Exercise 6

Let's consider the probability density function"p.d.f." defined given by

$$f(x) = \begin{cases} cx^3(1-x^2), & \text{if } 0 \le x \le 1\\ 0, & \text{elsewhere} \end{cases}$$

a)Let's calculate the value of the constant *c*

A continuous random variable *X* will be a probability density function *if f*

$$f(x) \ge 0$$
, and $c \int_{-\infty}^{+\infty} f(x) dx = 1$,

$$f(x) \ge 0 \Leftrightarrow cx^3(1-x^2) \ge 0 \Rightarrow c \ge 0, x^3 \ge 0$$
 and $(1-x^2) \ge 0$

$$\int_0^1 cx^3 (1-x^2) dx = \int_0^1 cx^3 dx - \int_0^1 \frac{1}{6} cx^6 dx = 1, \text{ since } x \in [0; 1]$$

$$-\frac{c}{6} [x^4]^1 - [x]^1 - 1 \iff \frac{c}{6} - \frac{c}{6} = 1 \text{ and } c = 1$$

$$= \frac{c}{4} [x^4]_0^1 - [x]_0^1 = 1 \iff \frac{c}{4} - \frac{c}{6} = \frac{c}{12} = 1 \text{ and } c = 12$$

b) Let's find the mean and variance of X

*Mean, (X) of X,

we have
$$E(X) = \int_0^1 x f(x) dx = \int_0^1 x [12x^3(1-x^2)] dx = 12 \int_0^1 (x^4 - x^6) dx$$

$$= \frac{12}{5} [x^5]_0^1 - \frac{12}{7} [x^7]_0^1 = \frac{12}{5} - \frac{12}{7} = \frac{24}{35}$$

Therefore

$$E(X) = \frac{24}{35}$$

* The value of Var(X),

we have $Var(X) = E(x^{2}) - [E(X)]^{2}$

$$E(x^2) = \int_0^1 x^2 f(x) dx = \int_0^1 x^2 .12x^3 \left[1 - x^2 \right] dx = \int_0^1 12(x^5 - x^7) dx = 12 \left[\frac{x^6}{6} - \frac{x^8}{8} \right]_0^1 = \frac{12}{6} - \frac{12}{8} = \frac{1}{2}$$

$$\iff E(x^2) - [E(X)]^2 = \frac{1}{2} - \left(\frac{24}{35} \right)^2 = \frac{73}{2230},$$

Therefore,

$$Var(X) = \frac{37}{2230}$$

c) Let's determine the mode of X

from p.d.f., We have $f(x) = [12x^3 - 12x^5] = 0 \Leftrightarrow f'(x) = 12x^2(3 - 5x^2) = 0$

$$\therefore Either \ 12x^2 = 0 \Longrightarrow x = 0, or \ 3 - 5x^2 = 0 \Longleftrightarrow x = \pm \sqrt{\frac{3}{5}}$$

but
$$x \in [0; 1] \iff x > 0 \Rightarrow x = \sqrt{\frac{3}{5}}$$

 \therefore The mode $x = \sqrt{\frac{3}{5}}$

d). Let's show that $6m^4 - 4m^6 + 1 = 0$, given m as a median of X

If X is a continuous random variable in the range $x_0 \le x \le x_k$ $k \in \mathbb{R}$, then we have the median, m as the value of X if $P(x_0 \le x \le x_k) = \frac{1}{2}$

$$i.e. \int_{x_0}^{x_k} f(x) dx = \frac{1}{2}$$

$$\Rightarrow \int_0^m (12x^3 - 12x^5) dx = \frac{1}{2}$$

$$\Rightarrow (3x^4 - 2x^6)_0^m = \frac{1}{2} \Rightarrow 6m^4 - 4m^6 = 1$$
 and then we have

$$6x^4 - 4x^6 - 1 = 0$$