SEPTEMBER 2012

Exercise I (1.5+1+1.5=4) Given that $\int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx$ 1-Let's calculate I_{0} , $I_{1} and I_{2}$. We have $\int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx$, so when n = 0,1,2, we have respectively $I_{0} = \int_{0}^{\frac{\pi}{2}} \cos^{0}(x) dx = \int_{0}^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2} - 0 = \frac{\pi}{2}$ $I_{1} = \int_{0}^{\frac{\pi}{2}} \cos^{1}(x) dx = [\sin(x)]_{0}^{\frac{\pi}{2}} = \sin \frac{\pi}{2} - \sin 0$ $I_{2} = \int_{0}^{\frac{\pi}{2}} \cos^{2}(x) dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos(2x)) dx$ $I_{2} = \frac{1}{2} \Big[x + \frac{1}{2} \sin 2x \Big]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \Big[\frac{\pi}{2} + \frac{1}{2} \sin 2(\frac{\pi}{2}) - 0 - \sin 0 \Big] = \frac{\pi}{4}$ Therefore we have have b) Let's show that $\forall n \ge 2$, one has $nI_{n} = (n - 1)I_{n-2}$

We suppose $U(x) = cos^{n-1}(x)$ and V'(x) = cos(x). Also $cos^n(x) = cos^{n-1}(x)cos(x)$ $\begin{cases} U'(x) = -(n-1)cos^{n-2}(x)sin(x) \\ V(x) = sin(x) \end{cases}$

Using integration by parts we have $I_n = V(x)$. $U(x) = \int_0^{\frac{\pi}{2}} U'(x) V(x) dx \dots (i)$, substituting U(x), U'(x) and V'(x), V(x) into (i) gives $I_n = [\sin(x)\cos^{n-1}(x)]_0^{\frac{\pi}{2}} + (n-1)\int_0^{\frac{\pi}{2}} \sin(x)\cos^{n-2}(x)\sin(x) dx$ $= 0 + (n-1)\int_0^{\frac{\pi}{2}} \sin^2(x)\cos^{n-2}(x)dx = (n-1)\int_0^{\frac{\pi}{2}} (1 - \cos^2(x))\cos^{n-2}(x)dx$ $= (n-1)\int_0^{\frac{\pi}{2}} \cos^{n-2}(x)dx - (n-1)\int_0^{\frac{\pi}{2}} \cos^n(x)dx = (n-1)I_{n-2} - (n-1)I_n$ $\Leftrightarrow I_n = (n-1)I_{n-2} - (n-1)I_n \Leftrightarrow I_n + (n-1)I_n = nI_n = (n-1)I_{n-2}$ c) Let's deduce the value of $I_n \forall n \ge 1$ From (b) we have $nI_n = (n-1)I_{n-2} \Leftrightarrow \frac{I_n}{I_{n-2}} = \frac{n-1}{n} = 1 - \frac{1}{n} \Leftrightarrow n = \frac{I_{n-2} - I_n}{I_{n-2}}$. Thus we have $\boxed{I_{n-2} - I_n = n \ \forall n \ge 1}$

Exercise II (4mks)

1)Let's study the continuity of the following function

$$f(x) = \begin{cases} x^2 \text{ if } x \le 0\\ x \text{ if } 0 < x < 2 \\ 4 - x \text{ if } x \ge 2 \end{cases} \begin{cases} g(x) \text{ if } x \le 0\\ h(x) \text{ if } 0 < x < 2\\ i(x) \text{ if } x \ge 2 \end{cases}$$

*We have $\lim_{x\to 0^-} x^2 = 0 = g(0)$ hence is continuous $\forall x \le 0$

*Let $x = 1 \in [0; 2[$ then we have $\lim_{x \to 1} x = 1 = h(1)$ thus h(x) is continuous $\forall x \in [0; 2[$

*Lastly, we have $\lim_{x\to 2^+} 4 - x = 2 = i(2)$, hence i(x) is continuous $\forall x \ge 2$

Since f(x) is

continuous $\forall x \leq 2$; $\forall x \in]0$; 2[and $\forall \geq 2$ we conclude it's continuous $\forall x \in \mathbb{R}$

2) Let's show g(x) is continuous and derivable and it's derivative g'(x) is continuous

We've
$$g(x) = \begin{cases} x^2 & \text{if } x \le 0\\ 0 & \text{if } x = 0\\ \cos(x) - 1 & \text{if } x > 0 \end{cases} \Leftrightarrow \begin{cases} h(x) & \text{if } x < 0\\ g(x) & \text{if } x = 0\\ i(x) & \text{if } x > 0 \end{cases}$$

* We've $\lim_{x\to 0^-} x^2 = 0 = \lim_{x\to 0^+} (\cos(x) - 1)$ hence g(x) is cotinuous (i)

$$g'(x) = \begin{cases} -\frac{1}{x^2} e^{\frac{1}{x}} if \ x < 0\\ 0 \ if \ x = 0\\ -\sin(x) \ if \ x > 0 \end{cases}$$

*We've $\lim_{x\to 0^-} \frac{h(x)-h'(0)}{x-0} = \lim_{x\to 0^-} \frac{e^{\frac{1}{x}} + e^{\frac{1}{x}}}{x} = \lim_{x\to 0^-} \frac{e^{\frac{1}{x}}(1+\frac{1}{x^2})}{x}$

Let $X = \frac{1}{x} \Leftrightarrow As \ x \to 0^-, X \to -\infty$ Substituting X in the above we've

$$\lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}}(1+\frac{1}{x^2})}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{e^{X}(1+X^2)}{\frac{1}{x}} = \lim_{x \to -\infty} Xe^{X}(1+X^2) = 0$$

Also from g'(x) we've $\lim_{x\to o^+} \sin(x) = 0$

Therefore g(x) differentiable(*ii*)

* Determination of continuity of g'(x)

from (i)limits of g(x) exist and from (ii) g(x) is respectively

continuous and derivable and g'(x) is continuous from (iii)

Exercise III (3mks)

Given a discrete random variable X with the probability distribution with E(X) = 2, with distribution table below.

(X=x)	0	1	2	3	4
P(X		p		q	
= <i>x</i>)	0.1		0.25		0.05

a) Let's find the values of p and q

We know that for a discrete random variable, $X, \sum_{i=0}^{4} x_i P(X = x_i) = 1$. Hence we have $\sum_{i=0}^{4} x_i P(X = x_i) = 0x0.0.1 + 1xp + 2x0.25 + 3xq + 4x0.05 = E(X) = 2$ $\Leftrightarrow 1xp + 2x0.25 + 3xq + 4x0.05 = 2 \Leftrightarrow p + 3q = 1.3 \dots ...(i)$ Also $\sum_{i=0}^{4} P(X = x_i) = 0.1 + +p + 0.25 + q + 0.05 = 1 \Leftrightarrow p + q = 0.6 \dots ...(ii)$ $\begin{cases} p + 3q = 1.3 \dots ...(i) \\ p + q = 0.6 \dots ...(ii) \end{cases} \Leftrightarrow \begin{cases} p = 0.35 \\ q = 0.25 \end{cases}$ By solving (i) and (ii) Therefore we have

Therefore we have

$$p = 0.25$$
 and $q = 0.35$

b) Let's find Var(X). We know that, $Var(X) = E(X^2) - E^2(X) = E(X^2) - \mu^2$, where $E(X^2) = \sum_0^4 x^2 P(X = x) \Leftrightarrow E(X^2) = 0^2 x 0.1 + 1^2 x 0.25 + 2^2 x 0.25 + 3^2 x 0.35 + 4^2 x 0.05 = 5.00$ $Var(X) = E(X^2) - E^2(X) = (5.00) - (2.02)^2 = 5.00 - 4.81 = 0.19.$ Therefore we Var(X) = 0.19 have

c) Let's calculate the average E(Y) and variance Var(Y) of Y = 5X + 4

*Average of Y

$$E(Y) = E(5X + 4) = 5E(X) + 4 = 5x2.02 + 4 = 10.10 + 4 = 14.10 \dots \dots (1)$$

Annales brainprepa

* Variance of Y

$$Var(Y) = Var(5X + 4) = Var(5X) + Var(4)$$

= 5²Var(X) + 0 = 25x0.19 = 4.75 (2)
Therefore (1)and (2) $\Rightarrow E(Y) = 14.10 \text{ and } Var(Y) = 4.75$

Exercise III (9mks).

Part 1 (6mks).

Let f be a function defined on \mathbb{R} by $f(x) = \frac{3(x-1)^3}{3x^2+1}$ and let C be its curve

1) Let's that there exists a single triplet (a; b; c) that one will determine such as for real x

$$f(x) = ax + b + \frac{cx}{3x^2 + 1}$$

We have $f(x) = \frac{3(x-1)^3}{3x^2+1} = \frac{3x^3-9x^2+9x-3}{3x^2+1}$ by expansion and using long division method one has $\frac{3x^3-9x^2+9x-3}{3x^2+1} = x - 3 + \frac{8x}{3x^2+1} \equiv ax + b + \frac{cx}{3x^2+1}$(I')

Therefore we have

From (1') that
$$f(x) = x - 3 + \frac{8x}{1 + 3x^2} \Rightarrow a = 1, b = -3 and c = 8$$

2) Let's determine the limits of f in $\pm \infty$

At
$$+\infty$$
, $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x - 3 + \frac{8x}{3x^2 + 1} \right]$
$$= \lim_{x \to +\infty} x \left[1 - \frac{3}{x} + \frac{8}{3x + \frac{1}{x}} \right] = +\infty \text{ since } \frac{1}{x} \to 0. \text{ as } x \to +\infty$$

At $-\infty$, $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x - 3 + \frac{8x}{3x^2 + 1} \right) = \lim_{x \to -\infty} x \left[1 - \frac{3}{x} + \frac{8}{3x + \frac{1}{x}} \right] = -\infty$ Therefore

$$\lim_{x \to +\infty} f(x) = +\infty \text{ and } \lim_{x \to -\infty} f(x) = -\infty$$

3) Let's show that f is differentiable and calculate its derivative

* *f* is made up of three parts x - 3, 8x and $3x^2 + 1$ all differentiable on \mathbb{R} or on $]-\infty$; $+\infty[$ therefore *f* is itself differentiable on \mathbb{R} or on $]-\infty$; $+\infty[$ (*a*)

Hence $\forall x \in]-\infty; +\infty [or \mathbb{R}, we have f'(x) = \left[x - 3 + \frac{8}{3x^2 + 1}\right]' = 1 + \frac{24x^2 - 48x + 8}{(3x^2 + 1)^2} \dots \dots (b).$

Hence

From (a), f(x) is differentiable on \mathbb{R} and from (b), $f'(x) = 1 + \frac{24x^2 - 48x + 8}{(3x^2 + 1)^2}$

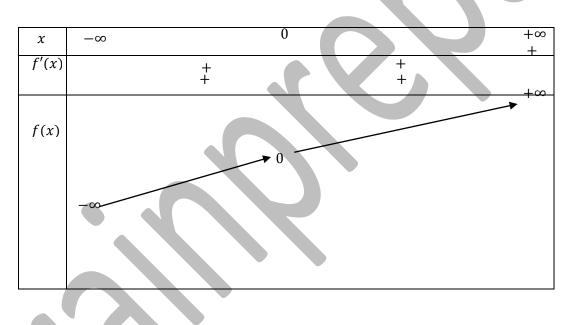
4) Let's draw the table of variation of f.

 $\forall x \in]-\infty; 0] f'(x) > 0$, hence positive and $\forall x \in [0; +\infty[f'(x) > 0 hence increasing.$

There no turning points since x has no real value(s). Intercepts: when x0 substituting x = 0 into $y = x(x + y)^3$

$$f(x)$$
 gives $y = \frac{3(0-1)^3}{3(0)^2+1} = -3$. hence (0; -3).

When
$$f(x) = 0$$
 we've $0 = \frac{3(x-1)^3}{3x^2+1} \iff x = 1$, hence (1; 0)



5) Let's show that the curve (*C*) has the line (*D*): y = x - 3, as oblique asymptote $\lim_{x \to \pm \infty} [f(x) - y] = \lim_{x \to \pm \infty} \left[x - 3 + \frac{8x}{1+3x^2} - (x - 3) \right] = \lim_{x \to \pm \infty} \left[\frac{8x}{3x^2+1} \right] = 0 \dots (k)$ Therefore The line y = x - 3 is an oblique asymptote to (*C*) from (k)

6) Let's study the relative positions

We have $f(x) - y = \frac{8x}{3x^2+1}$ we know that $\forall x \in \mathbb{R}, x^2 > 0$ and $3x^2 + 1 > 0$. therefore the sign of f(x) - y depends on that of 8x, and we have that

Annales brainprepa

$$\forall x \in]-\infty; 0], 8x < 0 \text{ and } \frac{8x}{3x^2 + 1} < 0 \Rightarrow f(x) - y < 0, thus negative, \forall x \in]-\infty; 0] \dots \dots \dots (1)$$

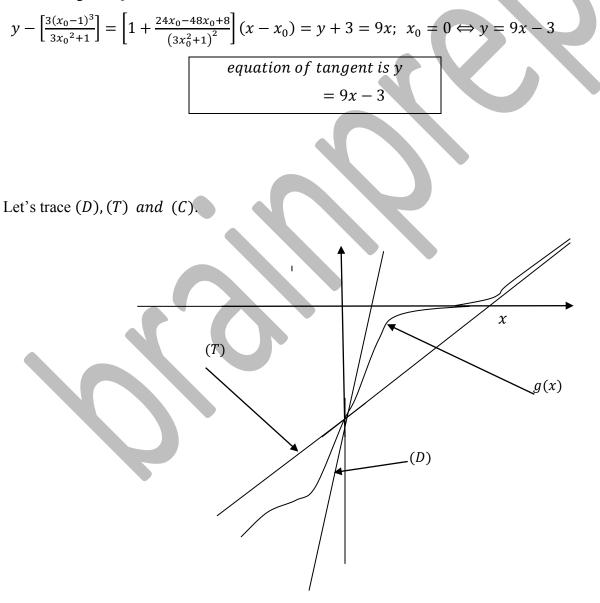
$$\forall x \in [0; +\infty[8x > 0 \text{ and } \frac{8x}{3x^2 + 1} > 0, hence f(x) - y, thus positive \dots \dots (2)$$

$$From (1) f(x) < y hencef(x) is below y \forall x \in]-\infty; 0] \text{ and } from (2) f(x) > y,$$

$$hence f(x) is above y, \forall x \in [0; +\infty[$$

$$Let's$$

give the equation of tangent (*T*) to (*C*) at the point of x –coordinate 0. And trace (*T*), (*D*)and (*C*). An equation of tangent to a curve at x_0 is given by $y - f(x_0) = f'(x_0)[x - x_0]$; $x_0 = 0$ Substituting for $x_0 = 0$ in the above we've



8) Let's show that the curve(C) has the centre of symmetry.

9) Let's show that the equation f(x) = 1 has a single solution in \mathbb{R} denoted as α .

10) Let's give the approximate value of α to 10^{-2} nearby excess.

Part II (3mks)

Given the function *f* defined by on \mathbb{R} by $g(x) = \frac{3(\sin(x)-1)^3}{3\sin^2(x)+1}$

1) Let's show that g is differentiable on \mathbb{R} and calculate g'(x)

* *g* consists of functions $3(\sin(x) - 1)^3$ and $\sin^2(x) + 1$ which are all differentiable on \mathbb{R} thus *g* is differentiable on \mathbb{R} (i)

$$* g'(x) = \left(\frac{(\sin(x)-1)^3}{\sin^2(x)+1}\right)' = \frac{2\cos(x)[\sin^2(x)\cos(x)-3\sin^2(x)-15\sin(x)+9\cos(x)]}{(\sin^2(x)+1)^2} \ \forall x \in \mathbb{R}. \text{ Using quotient rule.}$$

Therefore $g'(x) = [9cosx(sinx - 1)^2(sin^2x + 2sinx + 1)]/(3sin^2x + 1)^2$

 $=\frac{9cosx(sinx-1)^2(sinx+1)^2}{(3sinx+1)^2}.$

Therefore

$$g'(x) = \frac{9cosx(sinx - 1)^2(sinx + 1)^2}{(3sinx + 1)^2}$$

2. Let's draw the table of variation of

At turning points
$$g'(x) = 0 \Rightarrow \frac{9cosx(sinx-1)^2(sinx+1)^2}{(3sinx+1)^2} = 0$$
 and get
 $cosx = 0 \Rightarrow x = (2n+1)\pi$, $sin x = 1, -1$. We have $x \in \left\{\frac{-\pi}{2}; \frac{\pi}{2}\right\}$ in the range $\left[-\pi, \pi\right]$
 $g(-\pi) = -3$ and $g(\pi) = -3$ and $g(0) = -3$

Annales brainprepa

x	$-\pi$	$\frac{-\pi}{2}$		$\frac{\pi}{2}$	π
g'(x)	_	0	+	0	_
<i>g</i> (<i>x</i>)		-6		0	

3) Let's draw or plot a new drawing the representative curve of g.

