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SEPTEMBER 2012 

Exercise I (1.5+1+1.5=4) 

Given that ∫     
 

 
 

       

1-Let’s calculate               

We have∫     
 

 
 

     , so when            have respectively 

   ∫           ∫     
 

 
   

 

 

 

 
 

 

 
 

   

   ∫          

 
 

 

 [      ] 

 
     

 

 
      

   ∫     

 
 

 

      
 

 
∫            

 
 

 

   

        
 

 
*  

 

 
     +

 

 

 
 

 

 
*
 

 
 

 

 
    (

 

 
)        +  

 

 
 Therefore we 

have       

 

b) Let’s show that                            

   We suppose                                                               

    {
                            

                                                   
 

   Using integration by parts we have              ∫      
 

 
 

            , substituting 

                                     gives 

     [                ] 

 

       ∫                        
 

 
 

  

                 ∫     
 

 
 

                    ∫            
 

 
 

            

               ∫         
 

 
 

         ∫     
 

 
 

                         

                                                  Thus  

c) Let’s deduce the value of         

  From (b) we have               
  

    
 

   

 
   

 

 
   

       

    
.  

 Thus we have 
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Exercise II (4mks) 

1)Let’s study the continuity of the following function 

            {
         

           
           

 {

                 

             

                    

    

    We have                  hence is continuous      

      Let     ]   [    then we have                thus                      ]   [  

   Lastly, we have                    hence                         

Since        

continuous         ]   [                                           

 

2) Let’s show      is continuous and derivable and it’s derivative      is continuous  

  We’ve      {

           
           

              

 {

          

           

           

 

  We’ve                                                               

         {
 

 

   
 

        

         

             

 

  We’ve        
          

   
        

 
 
  

 
 
 

  

 
        

 
 
    

 

   

 
   

 Let   
 

 
              Substituting   in the above we’ve 

        
 
 
    

 

   

 
 

 
⁄

        
        

 

 

                    

Also from       we’ve                   

Therefore      differentiable           
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 Exercise III (3mks) 

Given a discrete random variable   with the probability distribution with       , with distribution table 

below. 

 

 

 

 

a) Let’s find the values of          

   We know that for a discrete random variable,   ∑         
 
      . Hence we have 

   ∑   
 
                                                

                                           

    Also ∑          
                                         

     {
               
               

  {
      
      

     By solving               

Therefore we have 

 

 

b) Let’s find       .We know that                            , where       ∑    
     

                                                       

                                                   

Therefore we have  

 

 

c) Let’s calculate the average      and variance        of        

     Average of   

                                                       

                                    

                                                                                                                 

                0            1         2           3             4 

   

    

            

0.1 
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      Variance of   

                                        

                                                                                           

        Therefore  

 

 

Exercise III (9mks). 

Part 1 (6mks). 

Let   be a function defined on   by      
       

     
 and let    be its curve  

1) Let’s that there exists a single triplet         that one will determine such as for real   

              
  

     
 

 We have      
       

     
 

            

     
 by expansion and using long division method one has  

 
            

     
     

  

     
      

  

     
………..(I’)  

Therefore we have  

                        
  

     
                  

 

2) Let’s determine the limits of         

 At   ,                     *    
  

     
+ 

                                      0  
 

 
 

 

   
 

 

1           
 

 
            

At                         (    
  

     
)          0  

 

 
 

 

   
 

 

1                   Therefore   

 

 

3) Let’s show that   is differentiable and calculate its derivative  

       is made up of three parts                  all differentiable on         ]      [   therefore 

                                      ]      [        

Hence    ]      [       we have       *    
 

     
+
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                Hence 

  

 

4) Let’s draw the table of variation of  . 

        ]    ]                         and    [     [                            

    There no turning points since   has no real value(s).    Intercepts: when                           

             
       

       
     hence        . 

     When                
       

     
                     

 

 

 

 

 

 

 

 

 

 

 

 

 

5) Let’s show that the curve     has the line             as oblique asymptote        [      ]  

       *    
  

           +         *
  

     
+           

Therefore   

                                              

 

6) Let’s study the relative positions 

   We have        
  

     
 we know that                        therefore the sign of      

                               we have that 

                                                          
          

        
 

  

                                                                       

 

 

 

 

 

  

 

 

 

 

  

                                                        

𝑓 𝑥  

𝑥 

𝑓  𝑥  
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   ]    ]          
  

     
                             ]    ]         

   [     [          
  

     
                                      

  

 

7) Let’s 

give the equation of tangent     to     at the point of   coordinate    And trace                  

 An equation of tangent to a curve at    is given by               [    ]       

 Substituting for                          

    *
        

   
   

+  [  
           

(   
   )

 ]                             

                        

      

 

 

 

Let’s trace                  . 

 

     

 

   

 

 

  

 

    

 

 

 

 

 

                                       ]    ]                       

                        [     [ 

 𝑇  

        𝑔 𝑥  

         𝐷  
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8) Let’s show that the curve    has the centre of symmetry. 

9) Let’s show that the equation        has a single solution in   denoted as  . 

10) Let’s give the approximate value of           nearby excess. 

Part II (3mks) 

Given the function   defined by on   by      
            

          
  

1) Let’s show that   is differentiable on   and calculate       

     consists of functions                            which are all differentiable on   thus    is 

differentiable on   …………..(i) 

        (
           

         
)
 

 
        [                                        ]

            
     .  Using quotient rule. 

Therefore       [                             ]                         

            
                       

          
.  

Therefore  

 

 

2. Let’s draw the table of variation of  

  At turning points         
                       

          
           

                                      ,
  

 
  

 

 
-               [–    ]  

                      and         
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3) Let’s draw or plot a new drawing the representative curve of    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑔 𝑥  

𝑥  𝜋 𝜋 𝜋

 
 

𝑔  𝑥  

 𝜋

 
 

       

   

  

    

(
𝜋

 
  ) 

( 
𝜋

 
   ) 

 𝜋 𝜋 
𝑥 

𝑔 𝑥  

  


