JULY 2010

Exercise 1

 (u_n) is the sequence defined by $u_0 = 3$; $u_{n+1} = \frac{4}{u_n}$,(a)

1) a) Let's calculate u_1, u_2, u_3 and u_4 .

- For n = 0 from (a) we have $u_1 = \frac{4}{u_0} = \frac{4}{3}$, For n = 1, we have $u_2 = \frac{4}{u_1} = 4\left(\frac{3}{4}\right) = 3$, For n = 2, we have $u_3 = \frac{4}{u_2} = 4\left(\frac{1}{3}\right) = \frac{4}{3}$, For n = 3, we have $u_4 = \frac{4}{u_3} = 4\left(\frac{3}{4}\right) = 3$.
- b. Let's conjecture about the nature of the sequence u_n

The sequence is sinusoidal and takes 2 values; 3 for even values of n and $\frac{4}{3}$ for odd values of n.

a) Let's show that v_n is a geometric sequence and determine it.

We have
$$v_{n+1} = \frac{-2+u_{n+1}}{2+u_{n+1}} = \frac{-2+\frac{4}{u_n}}{2+\frac{4}{u_n}} = \frac{-2u_n+4}{2u_n+4} = \frac{-2(u_n-2)}{2(u_n+2)} = -v_n$$

Thus $v_{n+1} = -v_n \iff \frac{v_{n+1}}{v_n} = -1$. And $v_0 = \frac{-2+u_0}{2+u_0} = \frac{-2+3}{2+3} = \frac{1}{5}$(b)

Thus

 v_n is a geometrical sequence with common ratio $\frac{v_{n+1}}{v_n} = -1$ and first term $v_0 = \frac{1}{5}$

b) Let's express v_n in terms of n and u_n in terms of n.

We have
$$v_n = \frac{-2+u_n}{2+u_n} \Leftrightarrow (2+u_n)v_n = -2+u_n \Leftrightarrow u_n = \frac{-2-2v_n}{v_n-1}$$

Thus $u_n = \frac{-2-2[\frac{1}{5}(-1)^n]}{\frac{1}{5}(-1)^{n-1}} = \frac{-10-2(-1)^n}{(-1)^{n-5}}$. Implying
 $v_n = \frac{-2+\frac{-10-2(-1)^n}{(-1)^{n-5}}}{2+\frac{-10-2(-1)^n}{(-1)^{n-5}}}$ and $u_n = \frac{-10-2(-1)^n}{(-1)^{n-5}}$
c) Let's show that $\forall n \ge 2, u_{n+2} = u_n$ and deduce u_{2009}
For $= 2, u_4 = 3, u_2 = 3 \Rightarrow u_4 = u_2$, thus $u_{2+2} = u_2$
Let $k \ge 2 \in \mathbb{N}$, and $p(k)$ the proposition: For $n \ge 2, u_{n+2} = u_2$
Suppose that $u_{k+2} = u_k$ and prove that $u_{k+3} = u_{k+1}$, we have
 $-10^{-2(-1)^{k+3}} - 10^{-2(-1)^{k+1}(-1)^2} - 10^{-2(-1)^{k+1}}$

$$u_{k+3} = \frac{10^{-2}(-1)}{(-1)^{k+3}-5} = \frac{10^{-2}(-1)}{(-1)^{k+1}(-1)^{2}-5} = \frac{10^{-2}(-1)}{(-1)^{k+1}-5} = u_{k+1}$$

Let's deduce u_{2009} . We've $u_{2009} = u_{2007+2} = u_{2007}$ and $u_{2007} = \frac{-10-2(-1)^{2007}}{(-1)^{2007}-5} = \frac{4}{3}$

We conclude that
$$\forall n \ge 2, u_{n+2} = u_n$$
 and $u_{2009} = \frac{4}{3}$

Exercise 2 (3mks)

1) a) Let's verified that
$$\forall x \in \mathbb{R}, \cos 2x = 2\cos^2 x - 1$$
.
From definition $\cos 2x = \cos^2 x - \sin^2 x = \cos^2 x - 1 + \cos^2 x \iff \cos 2x = 2\cos^2 x - 1$
Thus
b) Let's deduce the exact value of
From (a) above $\cos 2x = 2\cos^2 x - 1 \Rightarrow \cos 2x = 2\left(\frac{\sqrt{2} + \sqrt{6}}{4}\right)^2 - 1 = \frac{2(8 + 2\sqrt{3}) - 16}{16} = \frac{4\sqrt{3}}{16} = \frac{\sqrt{3}}{4}$
Thus

$$cos2x = \frac{\sqrt{3}}{4}$$

3) Let's solve inside]0; π] the equation $cos2x = \frac{\sqrt{3}}{2}$

We have,
$$\cos 2x = \frac{\sqrt{3}}{2} \Leftrightarrow \begin{cases} \cos 2x = \cos\left(\frac{\pi}{6}\right) + 2k\pi\\ \cos 2x = \cos\left(\frac{\pi}{6}\right) + 2k\pi \end{cases}, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \begin{cases} \frac{\pi}{12} + k\pi \\ -\frac{\pi}{12} + k\pi \end{cases}, k \in \left[0; \frac{\pi}{2}\right] \in \mathbb{Z}. \text{ For } k = 0, \Rightarrow x = \frac{\pi}{12}, k = 1 \Rightarrow x = \frac{11\pi}{12} \notin \left[0; \frac{\pi}{2}\right]$$

thus

The solution of
$$cos2x = \frac{\sqrt{3}}{2}$$
 is $x = \left\{\frac{\pi}{12}\right\}$

Exercise 3 (3mks)

a) Let's express the complex numbers, $\frac{z}{z'}$ and $z\left(\cos\frac{\pi}{4} - \sin\frac{\pi}{4}\right)$ in the form a + ib. * Expression of $\frac{z}{z'}$ in the form a + ib. We have $\frac{z}{z'} = \frac{2-3i}{2+3i} = \frac{(2-3i)(2+3i)}{(2+3i)(2-3i)} = \frac{-5}{12} - \frac{12}{13}i$ * Expression of $z\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)$ in the form a + ibwe have $z\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right) = (2 - 3i)\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$, thus we have respectively that: $\frac{z}{z'} = -\frac{\sqrt{2}}{2} - \frac{12}{13}i$ and $z\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$

b) Let's calculate
$$\frac{d^2 y}{dx^2}$$
 for $t = \frac{\pi}{2}$ and that $x = a(t + sint), y = a(1 - cost)$
 $\frac{dx}{dt} = [a(t + sint)]' = a(1 + cost), \frac{dy}{dt} = [a(1 - cost)]' = asint$
 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a(sint)}{a(1 + cost)} = \frac{sint}{1 + cost}$
 $\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt}(\frac{sint}{1 + cost})}{\frac{dx}{dt}} = \frac{1}{a(1 + cost)} \left[\frac{cost(1 + cost) - sint(-sint)}{(1 + cost)^2} \right]$
 $= \frac{cost + cos^2 t + sin^2 t}{(1 + cost)^2} \cdot \frac{1}{a(1 + cost)} = \frac{cost + 1}{(1 + cost)^2} \cdot \frac{1}{a(1 + cost)}$
 $\Rightarrow \frac{d^2 y}{dx^2} = \frac{1}{a(1 + cost)^2}, \text{ when, } = \frac{\pi}{2}, \text{ we have } \frac{d^2 y}{dx^2, t = \frac{\pi}{2}} = \frac{1}{a(1 + cos\frac{\pi}{2})^2} = \frac{1}{a}.$

1

 d^2y

Thus

Exercise 4 (4mks)

Let's evaluate the following integrals

a)
$$\int_0^1 \frac{x}{(x+2)(x+3)} dx.$$

Annales brainprepa

We have $\frac{x}{(x+2)(x+3)} \equiv \frac{a}{x+2} + \frac{b}{x+3} \Longrightarrow \frac{a(x+3)+b(x+2)}{(x+2)(x+3)} \equiv \frac{x}{(x+2)(x+3)}$ multiplying all through by (x+2)(x+3) we have $a(x+2) + b(x+3) \equiv x$ \Rightarrow $(a + b)x + 2a + 3b \equiv x$, equating coefficients we have $\begin{cases} a + b = 1 \dots (i) \\ 2a + 3b = 0 \quad (ii) \end{cases}$ solving the two equations for *a* and *b* we have From (i), b = 1 - a, putting in (ii) we have $2a + 3(1 - a) = 0 \implies a = 3$ and b = 1 - 3 = -2 $\Leftrightarrow \frac{x}{(x+2)(x+3)} \equiv \frac{3}{x+2} - \frac{2}{x+3}$ $\int_0^1 \frac{x}{(x+2)(x+3)} dx = \int_0^1 \left[\frac{3}{x+2} - \frac{2}{x+3} \right] dx = 3[\ln(x+2)]_0^1 - 2[\ln(x+3)]_0^1 = 3[\ln 4 - \ln 3] - 2[\ln 3 - \ln 2]$ $= -5 \ln 3 + 8 \ln 2$ $\int_0^1 \frac{x}{(x+2)(x+3)} dx = -5\ln 3 + \frac{1}{2} \ln 3 + \frac{1}{2$ Thus 8 ln 2 b) $\int_0^1 x e^{x+2} dx$. Let $= x \implies u' = 1$ and $v' = e^{x+2} \implies v = e^{x+2}$. Using integration by parts we have $\int_0^1 x e^{x+2} \, dx = [x e^{x+2}]_0^1 - \int_0^1 e^{x+2} \, dx = [x e^{x+2}]_0^1 - [e^{x+2}]_0^1 = e^3 - e^3 + e^2$ Thus $\int_0^1 x e^{x+2} dx = e^2$ b) $\int_0^{\frac{\pi}{3}} \sin^2 x dx.$ we have $\int_{0}^{\frac{\pi}{3}} \sin^2 x dx = \int_{0}^{\frac{\pi}{3}} \frac{1 - \cos 2x}{2} dx$, since $\frac{1 - \cos 2x}{2} = \sin^2 x$ $\Rightarrow \int_{0}^{\frac{\pi}{3}} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \left[\int_{0}^{\frac{\pi}{3}} 1 dx - \int_{0}^{\frac{\pi}{3}} \cos 2x dx \right] = \frac{1}{2} \left[(x)_{0}^{\frac{\pi}{3}} - \frac{1}{2} (\sin 2x)_{0}^{\frac{\pi}{3}} \right] = A$ $\Rightarrow A = \frac{1}{2} \left[\frac{\pi}{2} - \frac{1}{2} \sin \frac{2\pi}{2} \right] = \frac{\pi}{6} - \frac{\sqrt{3}}{2}.$

33

Annales brainprepa

Thus

$$\int_{0}^{\frac{\pi}{3}} \sin^2 x \, dx = \frac{\pi}{6} - \frac{\sqrt{3}}{8}$$

Exercise 5

Let's differentiate the following functions with respect to x.

a) $f(x) = e^{3x}(sinx - 3cosx)$. $\forall x \in \mathbb{R}, f(x)$ is differentiable, thus $f'(x) = [e^{3x}(sinx - 3cosx)]' = 3e^{3x}(sinx - 3cosx) + e^{3x}(cosx + 3sinx)$ $= e^{3x}(6sinx - 8cosx).$ Thus $f'(x) = e^{3x}(6sinx - 8cosx)$ $g(x) = \frac{x^2}{1+x}$ c) $\forall x \in \mathbb{R} - \{-1\}, g(x) \text{ is differentiable, thus}$ $g'(x) = \left[\frac{x^2}{1+x}\right]' = \frac{2x(1+x)-x^2}{(1+x)^2} = \frac{x^2+2x}{(1+x)^2}$, therefore $\forall x \in \mathbb{R} - \{-1\}, g'(x) = \frac{x^2 + 2x}{(1+x)^2}$ d) Given the relation, $12v = x^2\sqrt{3b^2 + x^2}$, where b > 0. Let's show that the maximum value of v as x varies is $\frac{b^3}{6}$ From $12v = x^2\sqrt{3b^2 + x^2} \Longrightarrow v = \frac{x^2}{12}\sqrt{3b^3 + x^2}$ $v'(x) = \frac{2x}{12} \left[\sqrt{3b^2 + x^2} + \frac{x^2}{2\sqrt{3b^3 + x^2}} \right] = \frac{x}{4} \left[\frac{2b^2 + x^2}{\sqrt{3b^2 + x^2}} \right].$ At maximum Value v, v'(x) = 0. Thus, $\frac{x}{4} \left[\frac{2b^2 + x^2}{\sqrt{2b^2 + x^2}} \right] = 0 \implies x = 0 \text{ or } 2b^2 + x^2 = 0$. From where $x^2 = -2b^2$. From $12v = x^2\sqrt{3b^2 + x^2}$ and $x^2 = -2b^2$ $\Rightarrow 12v = x^2\sqrt{3b^2 - 2b^2} = x^2\sqrt{|b^2|}$. The maximum value of v is obtained when $x^2 > 0 \Leftrightarrow$ $12v_{max} = 2b^2$. $b = 2b^3 \implies v_{max} = \frac{2b^3}{12} = \frac{b^3}{6}$. Thus

Annales brainprepa

