Annales brainprepa

Exercise 4 (4pts)

There are four affirmations let's say which of them is true or false, given that

$$f(x) = \ln\left[\frac{2x+1}{x-1}\right]$$

1. *f* is defined on]1; $+\infty$ [, true it's defined on] $-\infty$; 0[and on]1; $+\infty$ [.

2.
$$f'(x) = -\frac{1}{(x-1)^2} \ln\left(\frac{2x+1}{x-1}\right)$$
, false, $f'(x) = \frac{2x-3}{(2x+1)(x-1)}$

- 3. The line x = 1 is an asymptote to the curve of f. false.
- 4. The curve of f admet a horizontal asymptote. True

JULY 2011

Exercise I (7mks)

A)Let f be a function defined on]0; $+\infty$ [by $f(x) = x - 2 + \frac{1}{2} \ln x$.

1)a-let's calculate the limits of f at 0 and at +

At 0, we have, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \left[x - 2 + \frac{1}{2} \ln x \right] = -\infty$

At
$$+\infty$$
, we have $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x - 2 + \frac{1}{2} \ln x \right] = +\infty$.

Thus

b)let's calculate f'(x) and give the table of variation of f.

$$\forall x \in]0; +\infty[, f \text{ is differentiable} \Rightarrow f'(x) = 1 + \frac{1}{2x} = \frac{2x+1}{2x}$$

We know from above that $x > 0 \Rightarrow \forall x \in]0; +\infty[, \frac{2x+1}{2x} > 0$

$$\forall x \in]0; +\infty[, f'(x) = \frac{2x+1}{2x}$$

 $\lim f(x) = -\infty$ and \lim

= +∞

f(x)

Table of variation

 $\forall x \in]0; +\infty[, f'(x) > 0, it's strickly increasing on]0; +\infty[$

Annales brainprepa

4)a) let's show that the equation f(x) = 0, has a unique solution denoted by α on]0; $+\infty$ [

x	1.75	1.74	1.73	1.72
f(x)	0.029	0.016	0.004	-0.001

f is defined and continuous and also strictly increasing in the interval $]0; +\infty[$

 $f(]0; +\infty[) =]\lim_{x \to 0} f(x); \lim_{x \to +\infty} f(x)[=]-\infty; +\infty[\text{ and } 0 \in]-\infty; +\infty[, \infty[$ Therefore f(x) = 0 has a unique solution α on $]0; +\infty[$

Let's give the value of $\alpha at 10^{-2}$ near.

We have
$$f(1) = 1 - 2 + \frac{1}{2} \ln 1 = -1$$
 and $f(2) = 2 - 2 + \frac{1}{2} \ln 2 = 0.3$
 $f(1). f(2) < 0 \Rightarrow \alpha \in]1; 2[,$
 $\frac{1+2}{2} = 1.5$
Also $f(1.5) = 1.5 - 2 + \frac{1}{2} \ln 1.5 = -0.29$
 $f(2). f(1.5) < 0, \Rightarrow \alpha \in]1; 2[$
 $\frac{1.5+2}{2} = 1.75 \Rightarrow f(1.75) = 1.75 - 2 + \frac{1}{2} \ln 1.75 = 0.029$
 $f(1.5). f(1.75) < 0 \Rightarrow \alpha \in]1.5, 1.75[$
 $\frac{1.5+1.75}{2} = 1.625 \Rightarrow f(1.625) = 1.625 - 2 + \frac{1}{2} \ln 1.625 = -0.13$
 $f(1.75). f(1.625) < 0 \Rightarrow \alpha \in]1.625; 1.75[$

 $f(1.72). f(1.73) < 0, \Rightarrow \alpha \in]1.72; 1.73[$ since $[1.73 - 1.72] = 10^{-2}$ B) let's *g* be a function defined on $[0; +\infty[$ by $g(x) = -\frac{7}{8}x^2 + x - \frac{1}{4}x^2 \ln x, \forall x > 0, g(0) = 0$ 1) a) let's study the continuity and the differentiation of g in 0.

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \left[-\frac{7}{8} x^2 + x - \frac{1}{4} x^2 \ln x \right] = 0 = g(0) \text{ thus}$$
$$g(0) = \lim_{x \to 0^+} g(x) = 0, \text{ it's continuous at } 0$$

 $\lim_{x \to 0^+} \left[\frac{g(x) - g'(0)}{x - 0} \right] = \lim_{x \to 0^+} \left[-\frac{7}{8}x + 1 - \frac{1}{4}x \ln x \right] = 1$

Since $\lim_{x\to 0^+} \left[\right]$	$\frac{g(x)-g'(0)}{x-0}$] \exists !, we conclude that g is differentiable at 0	
2)a) Let's calcu	late $g'(x)$ and verify that $g'(x) = xf\left(\frac{1}{x}\right)$, $\forall x > 0$	
From above <i>g</i>	(x) is differentiable, thus $g'(x) = \left(-\frac{7}{8}x^2 + x - \frac{1}{4}x^2\ln x\right)'$	
	$= -\frac{7}{4}x + 1 - \frac{1}{2}x(\ln x) - \frac{1}{4}$	x
	$= x \left[-2 + \frac{1}{x} + \frac{1}{2} \ln \left(\frac{1}{x} \right) \right] = xf$	$\left(\frac{1}{x}\right)$
	Thus $g'(x) = x \left[-2 + \frac{1}{x} + \frac{1}{2} \ln \left(\frac{1}{x} \right) \right] = x f \left(\frac{1}{x} \right)$,	
	$\forall x > 0$	
	$\begin{array}{c c} x & 0 & k \end{array}$	+ ∞
	g'(x) +	_
	g	(k)
	g(x) = 0	-∞

b)Let's deduce the sign of g'(x) and draw the variation table.

 $\forall x \in [0; k], g'(x) > 0$ it's stretly increasing on [0; k]

 $\forall x \in [k; +\infty[, g'(x) < 0, it's strictly decreasing on [k; +\infty[$

4) let's give the equations of tangent to the curve of g at the point of $x - coordinate \ 0 \ and \ 1$ At the point, x = 0, we have $y_0 = g(0)(x - 0) + g(0) = x$

51

At the point, x = 1, we have $y_1 = g(1)(x - 1) + g(1) = -x + 1 + \frac{1}{8} = -x + \frac{9}{8}$, thus equations are; $y_0 = x \text{ and } y_1 = -x + \frac{9}{8}$ * let 's plot *c* and the tangents

Exercise II

a)Let's evaluate the following,s

a)Let's evaluate the following,s
1)
$$\int_{0}^{\sqrt{3}} x^{2} \arctan(x) dx$$
.
Let $\begin{cases} u = \arctan(x) \\ v' = x^{2} \end{cases} \Rightarrow \begin{cases} u' = \frac{1}{1+x^{2}} \\ v = \frac{1}{3}x^{3} \end{cases}$ Using integration by parts we have,
 $\int_{0}^{\sqrt{3}} x^{2} \arctan(x) dx = \left[\frac{1}{3}x^{3} \arctan(x)\right]_{0}^{\sqrt{3}} - \frac{1}{3}\int_{0}^{\sqrt{2}} \frac{x^{3}}{1+x^{2}} dx$
 $= \left[\frac{1}{3}x^{3} \arctan(x)\right]_{0}^{\sqrt{3}} - \frac{1}{3}\int_{0}^{\sqrt{3}} \left[x - \frac{x}{1+x^{2}}\right] dx$
 $= \left[\frac{1}{3}x^{3} \arctan(x)\right]_{0}^{\sqrt{3}} - \frac{1}{3}\int_{0}^{\sqrt{3}} \left[x - \frac{x}{1+x^{2}}\right] dx$
 $= \frac{1}{3}(\sqrt{3})^{3} \arctan(\sqrt{3}) + \frac{3}{2} - \ln 2$
 $= \frac{\sqrt{3}\pi}{3} + \frac{3}{2} - \ln 2$, thus we have
 $\begin{bmatrix} \sqrt{3}^{\sqrt{3}} x^{2} \arctan(x) \\ \frac{\pi\sqrt{3}}{3} + \frac{3}{2} - \frac{1}{2} \end{bmatrix}$
Let, $x = tg(t)$, for $x = 0$, $t = 0$ and for $x = 1$, $t = \frac{\pi}{4}$
 $dx = \frac{1}{\cos^{2}(t)} dt \Rightarrow \int_{0}^{1} \frac{1}{(1+x^{2})^{2}} dx = \int_{0}^{\frac{\pi}{4}} \frac{\frac{1}{\cos^{2}(t)}}{(1+(tg)^{2})^{2}} dt$
 $= \int_{0}^{\frac{\pi}{4}} \cos^{2}(t) dt = \int_{0}^{\frac{\pi}{4}} \frac{1+\cos 2t}{2} dt = \frac{1}{2} \left[t + \frac{1}{2}sint\right]_{0}^{\frac{\pi}{4}} = \frac{\pi + 2}{8}$

Thus

$$\int_0^1 \frac{1}{(1+x^2)^2} dx = \frac{\pi+2}{8}$$

Exercise III

b)Let's solve the following differential equations.

 $y' + y = 2\cos(x) + (x + 1)e^{-x}....E$ * let's determine the characteristic equation of y. We have, $y' + y = 0 \Rightarrow \frac{y'}{v} = -1 \Rightarrow \int \frac{1}{v} dy = \int (-1) dx \Rightarrow \ln y_c = -x + k \Rightarrow y_c = e^t e^{-x} = k e^{-x} k \in \mathbb{R}.$ * let's determine the particular solution of Let $y_c = A(x)e^{-x} \Longrightarrow y'_c = A'(x)e^{-x} - A(x)e^{-x}$. Substituting y_c and y'_c into E, we have $A'(x)e^{-x} - A(x)e^{-x} + A(x)e^{-x} = 2\cos(x) + (1+x)e^{-x}$ $\Rightarrow A'(x)e^{-x} = 2\cos(x) + (x+1)e^{-x}\dots(E)$ Multiplying all through by e^x we have $A'(x) = 2e^x \cos(x) + (1 + x)$. Integrating one has $\int A'(x)dx = \int [2e^x \cos(x) + (1+x)]dx \Longrightarrow A(x) = 2 \int e^x \cos(x) dx + x + \frac{x^2}{2} \dots E'$ From E', we have $\int e^x \cos(x) dx = e^x \cos(x) + \int e^x \sin(x) dx$ $= e^{x}[\cos(x) + \sin(x)] - \int e^{x}\cos(x) \, dx + k$ $\implies 2 \int e^{x}\cos(x) \, dx = e^{x}[\cos(x) + \sin(x)] + k \implies \int e^{x}\cos(x) \, dx = \frac{e^{x}}{2}[\cos(x) + \sin(x)] + c \dots E''$ Substituting E'' into E', we have $A(x) = e^{x} [\cos(x) + \sin(x)] + x + \frac{x^{2}}{2} + c, c \in \mathbb{R}.$ Thus general Solution is $y = e^{x} [\cos(x) + \sin(x)] + \frac{x^{2}}{2} + x + ke^{-x} + c, k \text{ and } c \in \mathbb{R}.$ $y = e^{x}[\cos(x) + \sin(x)] + \frac{x^{2}}{2} + x + ke^{-x} + c, \quad \forall k, c \in \mathbb{R}.$