JULY 2010

Exercise I (4mk)

Given that, $(t) = 2^{-t}$,

1-a Put, f(t) in the form $f(t) = e^{kt}$.

1-b calculate $\int f(t)dt$

2 The sequence $(U_n)_{n\geq 1}$ is defined by, $U_n=\int_{-n}^n 2^{-t}dt$, show that (U_n) is geometrical sequence with ratio $\frac{1}{2}$.

3 Given that: $S_n = \sum_{i=1}^n U_i$. Calculate S_n in terms of n.

Exercise II (3mks)

- 1) Solve the differential equation $\frac{d^2y}{dx^2} 16y = 0$. Given that $y = 1, \frac{dy}{dx} = 0$, when x = 0.
- 2) When a body falls under gravity in a medium in which the resistance is proportional to the speed, the relation between the speed V and the time t is given by $\frac{dy}{dx} + kV = g$. Where g and k are constants. Prove that $V = \frac{g}{k} + Ae^{-kt}$, where A is a constant.
- 3) Given that = 0 when t = 0. find t when $v = \frac{g}{2k}$

Exercise III (8mks)

1) Calculate the following quantities:

a)
$$\int \frac{2x}{x^4+1} dx$$

b)
$$\int \left(\frac{1}{\sin^2(x)} + \frac{1}{\cos^2(x)}\right) dx$$
 c) $\int_0^1 \frac{e^x - 1}{e^x + 1} dx$ d) $\int_0^1 \frac{t}{1 + t^4} dt$.

c)
$$\int_0^1 \frac{e^x - 1}{e^x + 1} dx d$$
 d) $\int_0^1 \frac{t}{1 + t^4} dt$

Exercise IV (3mks)

A transformation *T* of three dimensional space is defined by:

$$r' = (x', y', z'), r = (x, y, z), M\begin{pmatrix} 7 & 5 & 6 \\ 4 & 3 & 3 \\ 10 & 7 & k \end{pmatrix}$$
, where k is a constant.

- a) Find the value of k for which there is no inverse transformation.
- b) If k = 9, show that all the points (x, y, z) are transformed into points of the plane 2x' y' z' = 0
- c) If k = 8, find M^{-1} and hence, or otherwise, find point which is mapped into (6, 2, 9).

Exercise V (4mks)

1) A discrete random variable *X* has the following probability distribution.

(X=x)	0	1	2	3	4
P(X=x)	0.12	p	0.4	q	0.08

Given that E(X) = 2.02, find: a) The values of p and q

- b) Var(X)
- c) The mean and variance of

$$Y = 3X - 2$$

2) The probability that an item produced by a certain machine is defective is 0.05. A quality control scheme consists of selecting 10 items from a large batch produced by the machine and the whole batch if three or more items are defective. Find the probability that a batch is rejected giving your answer correct to four decimal places 10^{-4} .

Exercise VI (2mks)

Find the algebraic form of the complex number = $\frac{(1+i)^4}{(\sqrt{3}-i)^3}$