JULY 2009

Exercise I (4marks)

Given that the sequences U_n defined by $U_0=2$, $U_1=3$ and $U_n=\frac{4U_{n-1}-U_{n-2}}{3}$ and V_n defined by $V_n=U_n-V_n$ $n \in N^*$

- a) Show that (V_n) is a geometrical sequence in which you will determine the first term and common ratio.
- b) Calculate the general expression in terms of n.
- c) Calculate $S_n = V_1 + V_2 + \ldots + V_n$ in terms of n.
- d) Show that that sequence (U_n) converges and specify its limit.

Exercise II (3marks)

1) By using the substitution u=1+cosh(x).Evaluate $\int_0^{\cosh^{-1}(2)} \frac{\tanh(x)}{1+\cosh(x)} dx$, Leaving your answer in terms of natural logarithms. 2) Show that $\frac{d}{dx}(\tanh^{-1}(x)) = \frac{1}{1-x^2}$. Hence, or otherwise show that $\int_0^{\frac{1}{2}} \tanh^{-1}(x) dx = \frac{1}{4} \ln \left[\frac{27}{16}\right]$

Exercise III (2marks)

Determine the Cartesian equations of the planes:

- a) Passing through P(-2;6;7) and has as normal vector n(0;3;0).
- b) Passing through P(-6;10;16) and is perpendicular to the right-hand side of AB given A(1;0;5) and B(3;-3;2)

EXERCISE IV (4marks)

- 1) Find the square root of the complex number: $Z_1=5+12i$.
- 2) Find the modulus and argument of the complex number: $Z_2 = \frac{(1+i)^2}{(-1+i)^4}$
- 3) Given that $Z_3 = 1 + i\sqrt{3}$ represent the complex numbers $Z_3 Z_3^*$ and $\frac{Z_3}{Z_3^*}$ as vectors on an Argand diagram where
 - $Z^*{}_3$ is the complex conjugate of Z_3 .

EXERCISE V (3marks)

Calculate the following quantities

a) $\int \frac{3x+5}{x^2+x+1} dx$ b) $\int \frac{3x+7}{\sqrt{-2x^2+x+1}} dx$

EXERCISE VI (4marks)

A continuous random

$$f(x) = \begin{cases} cx^3(1-x^2)\\ 0, elsewhere \end{cases}, if \ 0 \le x \le 1$$

Find

- a) The value of the constant c
- b) The mean and variance of X
- c) The mode of X

Given that m is the median of X, show that $4m^6 - 6m^4 + 1 = 0$