JULY 2011

EXERCISE I(7markes)

A) Let f be the function defined on $]0; +\infty[$ by $f(x) = x - 2 + \frac{1}{2}ln(x)$

1) a) Calculate the limits of f in 0 and $+\infty$.

b) Calculate f' and give the variation sense of f.

2) a) Show that the equation f(x) = 0 has a unique solution denoted on $]0; +\infty[$.

Give the approximate value of α at 10^{-2} near.

b) Study the sign of f(x).

B) Let g be the function defined $[0; +\infty[$ by $g(x) = -\frac{7}{8}x^2 + x - \frac{1}{4}x^2In(x)$. $\forall x > 0$ and g(0) = 0.

1) a) Study the continuity and differentiability of g in 0.
b) Determine the limit of g in +∞.

2) Let's consider g' the derivative of the function g. $\forall x > 0$, calculate g'(x) and verify that $g'(x) = xf\left(\frac{1}{x}\right)$

3) Deduce the sign of g'(x) Draw the variation table of g.

4) Give the equations of tangents to the curve denoted (C) of g at the points of x-coordinates 0 and 1.Plot (C) and the previous tangents.

EXERCISE II (2+2=4)

Evaluate

1) $\int_{0}^{\sqrt{3}} x^2 \arctan(x) dx$ 2) $\int_{0}^{1} \frac{1}{(1+x^2)^2} dx$

EXERCISE III (3markes)

Solve the following differential equation $y' + y = 2\cos(x) + (x + 1)e^{-x}$.

EXERCISE IV (6markes)

Let's consider the numerical sequence (U_n) and (V_n) defined by $U_0 = 2 \forall \in IN V_n = \frac{2}{U_n}$ and $U_{n+1} = \frac{U_n + V_n}{2}$

1) Calculate V_0 ; U_1 ; V_1 ; U_2 ; V_2 . Give the results in the form of non-reducible fraction.

2) Show that (U_n) and (V_n) are bounded above by 2 bounded below by 1.

3) Show that
$$\forall n \in IN \ U_{n+1} - V_{n+1} = \frac{(U_n - V_n)^2}{2(U_n + V_n)}$$
.

4) Show that $\forall n \in IN \ U_n \ge V_n$.

5) Show that (U_n) is decreasing and (V_n) is increasing.

6) Show that $\forall n \in \mathbb{N}$, $(u_n - v_n) \leq 1$. Deduced that $(u_n - v_n)^2 \leq (u_n - v_n)$.

7) a) Show that
$$\forall n \in \mathbb{N}$$
, $u_{n+1} - v_{n+1} \leq \frac{1}{4}(u_n - v_n)$.

b) Show that $\forall n \in \mathbb{N}, u_n - v_n \leq \frac{1}{4^n}$

8) Show that (u_n) and, (v_n) , converges to the same limit.