CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE

Option Économie

CORRIGÉ DE LA 1ère COMPOSITION DE MATHÉMATIQUES

Exercice

Les symboles Ln et tan représentent respectivement le logarithme népérien et la tangente. On donne Ln 2 = 0,69.

1) Comparer les intégrales A et B :

$$A = \int_{0}^{\pi/4} Ln(\cos x) \, \mathrm{d}x$$

$$B = \int_{0}^{\pi/4} Ln(\cos(\pi/4 - x)) dx$$

En faisant dans B le changement de variable $u = \pi/4$ - x, on obtient directement A = B.

2) Calculer l'intégrale I = $\int_{0}^{\pi/4} Ln(1 + tan x) dx$

On sait que $\cos(\pi/4 - x) = (\cos x + \sin x)/\sqrt{2}$.

 $1 + \tan x = (\cos x + \sin x)/\cos x$

$$Ln(1 + tanx) = Ln(\cos x + \sin x) - Ln(\cos x) = Ln\sqrt{2}(\cos(\pi/4 - x)) - Ln(\cos x) = Ln\sqrt{2}$$

+ $Ln(\cos(\pi/4 - x)) - Ln(\cos x)$

D'où, en passant à l'intégrale et comme A = B, on a $I = \frac{\pi}{4} Ln(\sqrt{2})$.

Problème 1

Le symbole *Ln* représente le logarithme népérien.

1) Soit l'application
$$g:]0, 1[\cup]1, +\infty[\rightarrow R, \text{ définie par}: g(x) = \frac{1}{Lnx}$$

Etudier très précisément les variations de g (dérivées, sens de variation, concavité, limites, asymptotes éventuelles, tableau de variation, graphe).

Pour toute la suite du problème, on admettra l'existence d'une primitive G de g, qu'on ne cherchera pas à calculer explicitement.

Il est évident que g est définie sur R^{+*} sauf pour x = 1.

Dérivée : $g'(x) = -1 / (xLn^2x) < 0$.

Donc *g* est décroissante.

De même, $g'(x) = (2 + Lnx)/x^2Ln^3x$ qui s'annule en $x = e^{-2}$

Donc point d'inflexion en $x = e^{-2}$ et $g(e^{-2}) = -\frac{1}{2}$.

Limites:

Quand $x \to 0$, g tend vers 0.

Quand $x \to 1$., g tend vers $-\infty$

Quand $x \to 1_+$, g tend vers $+\infty$

Quand $x \to +\infty$, g tend vers 0.

Asymptotes: x = 1, x = 0 (vers $+\infty$)

2) On considère l'ensemble $D = [0, 1/2] \cup [1, +\infty]$.

On définit l'intégrale J(x) par :

$$J(x) = \int_{x}^{2x} g(t)dt$$

Montrer que J(x) existe pour tout $x \in D$.

L'intégrale n'existe que si 1 n'est pas dans l'intervalle (x, 2x), soit 1 < x ou 1 > 2x, donc $x < \frac{1}{2}$ ou x > 1, ce qui correspond à D.

Avec la notation introduite en Q1, J(x) = G(2x) - G(x).

3) Soit l'ensemble $D^+ = [0, \frac{1}{2}[\cup]1, +\infty [= D + \{0\}]$

On définit l'application $f: D^+ \to R$ par :

$$\forall x \in D, f(x) = J(x)$$
$$f(0) = 0$$

Montrer que f est dérivable sur D, et calculer f'.

Etudier le signe de f' et en déduire le sens des variations de f.

Sur D, =
$$G(2x) - G(x)$$
, et donc, puisque G' = g, on a : $f'(x)$ existe et vaut : $f'(x) = 2g(2x) - g(x) = Ln(x/2) / [(Lnx) (Ln2x)]$

 \rightarrow Pour $x < \frac{1}{2}$, f'(x) est < 0, donc f est décroissante.

→ Pour
$$x > 1$$
, $f'(x)$ est $x < 0$ si $x / 2 > 1$, donc $x > 2$; de même, $f'(x) < 0$ si $x < 2$, et on a $f'(x) = 0$ si $x = 2$.

On remarque aussi que la limite de f' quand x tend vers 0 est égale à 0.

4) Démontrer que, $\forall x \in D$:

$$x/Ln(2x) \le f(x) \le x/Lnx$$

En déduire les limites de f(x) et de f(x)/x quand $x \to 0$.

Etudier la continuité et la dérivabilité de f en 0.

D'après les accroissements finis appliqués à f, f(x) = (2x - x)g(c), $x \le c \le 2x$.

Comme la fonction g est décroissante (question 1), $g(x) \ge g(c) \ge g(2x)$, donc :

$$x/Ln(2x) \le f(x) \le x/Lnx$$

et

$$1/Ln(2x) \le f(x)/x \le 1/Lnx$$

On en déduit quand *x* tend vers 0 :

- a) f(x) tend vers 0
- b) f(x)/x tend vers 0

Donc on peut prolonger f par continuité en 0.

De même, la limite de (f(x) - f(0))/(x - 0) = f(x)/x est égale à 0, qui est aussi la limite de f, en 0 (remarque de la question 3), donc f est dérivable en 0.

5) Quelles sont les limites de f(x) et de f(x)/x quand $x \to +\infty$?

Toujours en utilisant la double inégalité de la question 4, on a :

Quand x tend vers $+\infty$:

- a) f(x) tend vers $+\infty$
- b) f(x)/x tend vers 0
- 6) Soit l'application $h: [0, 1] \rightarrow R$:

$$u \rightarrow h(u) = Ln(u) - 2u + 2$$

Montrer qu'il existe un réel unique, noté α , $0 < \alpha < \frac{1}{2}$, tel que $h(\alpha) = 0$.

Montrer que \forall u \in $[\alpha, 1]$, on a $Ln(u) \ge 2u - 2$.

En déduire que f(x) est majorée, $\forall x \in [\alpha, \frac{1}{2}]$, par (Ln[(2x-1)/(x-1)])/2.

Calculer la limite de f quand $x \to \frac{1}{2}$.

En étudiant brièvement h(u) sur]0, 1], on voit que h est croissante de $-\infty$ à 1 - Ln2 lorsque u passe de 0 à $\frac{1}{2}$, admet un maximum égal à 1 - Ln2 en $\frac{1}{2}$ et décroit ensuite jusqu'à 0.

Donc il existe un nombre α , compris entre 0 et $\frac{1}{2}$, tel que $h(\alpha) = 0$.

Pour $u \ge \alpha$, h(u) est positive ou nulle, donc $Ln(u) \ge 2u - 2$.

Donc $1/Ln(u) \le 1/(2u - 2)$.

En reportant cette inégalité dans la définition de f, on voit que f(x) est majorée par l'intégrale :

$$f(x) \le \int_{x}^{2x} du/(2u-2) = (Ln[(2x-1)/(x-1)])/2.$$

Quand $x \to \frac{1}{2}$, (Ln[(2x-1)/(x-1)])/2 tend vers - ∞ et donc f aussi.

7) Montrer que, $\forall u \ge 1$, $Ln(u) \le u - 1$.

En déduire la limite de f quand $x \to 1$.

Comme en Question 6, en étudiant les variations de v(u) = Ln(u) - (u - 1), on trouve facilement que $Ln(u) \le u - 1$ quand $u \ge 1$.

On en déduit en minorant g(x) par 1/(u-1) dans l'intégrale que $f(x) \ge Ln[(2x-1)/(x-1)]$; or Ln[(2x-1)/(x-1)] tend vers $+\infty$ quand $x \to 1$, donc f aussi.

8) Construire le tableau de variations de f.

Donc, il résulte de tout ce qui précède, que :

Pour x entre 0 et $\frac{1}{2}$: f décroît de 0 à - ∞

Et pour $x \ge 1$:

- a) de 1 à 2, f décroît de $+\infty$ au minimum m = J(2) = G(4) G(2),
- b) puis f croît de m à $+\infty$ pour $x \ge 2$.

Problème 2

Soit l'application $f:]-1, +1[\rightarrow R, \text{ telle que} :$

$$x \to f(x) = (1 - x^2)^{-1/2}$$

1) On veut montrer que f est indéfiniment dérivable sur]-1, +1[et que, $\forall n \in \mathbb{N}$, il existe un polynôme réel P_n de la variable réelle, de degré n, tel que :

$$\forall x \in]-1, +1[, f^{(n)}(x) = P_n(x) / (1-x^2)^{n+1/2}$$

- a) Calculer les polynômes P₀, P₁, P₂, P₃.
- b) Montrer que f est indéfiniment dérivable sur sur]-1, +1[et exprimer P_{n+1} sous la forme :

(R1)
$$P_{n+1}(x) = a(x) P'_{n}(x) + \alpha(n) b(x) P_{n}(x)$$

où a(x), b(x) et $\alpha(n)$ sont respectivement des fonctions de x et n que l'on explicitera.

- 2) Montrer que, $\forall x \in]-1, +1[:(1-x^2) f'(x) x f(x) = 0$
- 3) Rappel : Formule de Leibniz : on rappelle que la dérivée d'ordre n du produit de deux fonctions u et v, notée $(uv)^{(n)}$, est donnée par la formule suivante :

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$$

En utilisant les résultats des questions (2) et (1), montrer que la suite de polynômes (P_n) vérifie la relation :

(R2)
$$P_{n+1}(x) - (2n+1)x P_n(x) - n^2(1-x^2) P_{n-1}(x) = 0$$

- 4) Etablir, $\forall n \in \mathbb{N}^*$, que $P'_{n}(x) = n^2 P_{n-1}(x)$
- 5) En déduire que, pour tout n entier, $n \neq 0$ et $n \neq 1$, on a la relation (R3):

(R3)
$$n^2 P_n(x) - (2n-1)x P'_n(x) - (1-x^2) P''_n(x) = 0$$

- 6) Pour tout n entier, calculer $P_n(0)$ et $P_n(1)$
- 1a) Des calculs simples conduisent à :

$$P_0 = 1$$
, $P_1(x) = x$, $P_2(x) = 2x^2 + 1$, $P_3(x) = 6x^3 + 9x$

b) Procédons par récurrence.

Soit la propriété « f est dérivable à l'ordre n et $\forall x \in]-1, +1[, f^{(n)}(x) = P_n(x)/(1-x^2)^{n+1/2}$ » La propriété est vraie au rang 0, avec $P_0 = 1$.

Supposons la propriété vraie au rang n.

 $P_n(x) / (1 - x^2)^{n+1/2}$ est dérivable, puisque $P_n(x)$ et $(1 - x^2)^{n+1/2}$ sont dérivables sur l'intervalle]-1, +1[,et donc $f^{(n+1)}$ existe et :

$$f^{(n+1)}(x) = (1-x^2)^{-n-1/2} P'_n(x) + (2n+1)x(1-x^2)^{-n-3/2} P_n(x)$$

$$f^{(n+1)}(x) = (1-x^2)^{-n-3/2} [(1-x^2)P'_n(x) + (2n+1)x P_n(x)]$$

D'où la relation (R1) recherchée avec $P_{n+1}(x) = a(x) P'_n(x) + \alpha(n) b(x) P_n(x)$, et $a(x) = (1 - x^2)$, b(x) = x et $\alpha(n) = (2n + 1)$.

2)
$$f'(x) = x(1-x^2)^{-3/2} = x f(x) (1-x^2)^{-1}$$

D'où $(1-x^2) f'(x) = x f(x)$

3) Partons de la relation $(1 - x^2)$ f'(x) - x f(x) = 0, et dérivons la n fois, avec d'abord $u = (1 - x^2)$ et v = f', puis avec u = x et v = f.

On remarque que u' = -2x, u'' = -2, puis $u^{(k)} = 0$ dès que $k \ge 3$. v = f', $v^{(n)} = f^{(n+1)}$, $v^{(n-1)} = f^{(n)}$, $v^{(n-2)} = f^{(n-1)}$.

La contribution du terme $(1-x^2)$ f'(x) sera donc $(1-x^2)$ $f^{(n+1)}-2nx$ $f^{(n)}-n(n-1)$ $f^{(n-1)}$.

De façon similaire, la contribution du terme x f(x) sera $x f^{(n)} - n f^{(n-1)}$.

D'où:
$$(1-x^2) f^{(n+1)} - (2n+1) x f^{(n)} - n^2 f^{(n-1)} = 0$$
.

Remplaçons respectivement $f^{(n+1)}$, $f^{(n)}$ et $f^{(n-1)}$ par leurs expressions issues de la question 1 faisant intervenir P_{n+1} , P_n , et P_{n-1} .

$$(1-x^2) P_{n+1}(x) (1-x^2)^{-n-3/2} - (2n+1)x P_n(x) (1-x^2)^{-n-1/2} - n^2 P_{n-1}(x) (1-\mathbf{x}^2)^{-n+1/2} = 0.$$

Ou encore :
$$P_{n+1}(x) (1-x^2)^{-n-1/2} - (2n+1)x P_n(x)(1-x^2)^{-n-1/2} - n^2 P_{n-1}(x) (1-x^2)^{-n+1/2} = 0$$
.

Et en simplifiant par $(1 - x^2)^{-n-1/2}$, on obtient la relation (R2) recherchée :

(R2)
$$P_{n+1}(x) - (2n+1)x P_n(x) - n^2(1-x^2).P_{n-1}(x) = 0$$

4) Cherchons à établir, \forall n \in N*, que $P'_{n}(x) = n^{2}P_{n-1}(x)$

D'après (R2), on a :
$$P_{n+1}(x) - (2n+1)x P_n(x) = n^2(1-x^2) P_{n-1}(x)$$

Or, d'après la question 1b, $P_{n+1}(x) - (2n+1)x P_n(x) = (1-x^2) P'_n(x)$

Il s'en suit $n^2(1-x^2) P_{n-1}(x) = (1-x^2) P'_n(x)$, et donc $P'_n(x) = n^2 P_{n-1}(x)$.

5) Ecrivons la relation (R2) au rang n:

$$P_n(x) - (2n - 1)x \cdot P_{n-1}(x) - (n-1)^2 (1 - x^2) P_{n-2}(x) = 0$$

D'après la question 4, $P_{n-1}(x) = P'_n(x)/n^2$, et donc en dérivant encore une fois :

$$P'_{n-1}(x) = P''_{n}(x)/n^2$$
,

Et d'après la question 4, $P'_{n-1}(x) = (n-1)^2 P_{n-2}(x) = P''_n(x)/n^2$.

En remplaçant dans (R2), on obtient :

$$P_n(x) - (2n - 1)x P'_n(x)/n^2 - (1 - x^2) P''_n(x)/n^2 = 0$$

Soit encore:
$$n^2P_n(x) - (2n-1)x P'_n(x) - (1-x^2) P''_n(x) = 0$$

6) On sait que l'on a $P_0(0) = 1$ et $P_0(1) = 1$, $P_1(0) = 0$ et $P_1(1) = 1$.

D'après la relation (R2) prise en x = 0, on a :

$$P_{n+1}(0) - n^2 P_{n-1}(0) = 0$$

De même, toujours avec la relation (R2) prise en x = 1, on a :

$$P_{n+1}(1) - (2n+1)P_n(1) = 0$$

Calcul de $P_n(0)$:

Pour *n* pair, n = 2p, $P_{2p+1}(0) - (2p)^2 P_{2p-1}(0) = 0$, qui va aller jusqu'à $P_1(0) = 0$, donc $P_{2p+1}(0) = 0$.

Pour n impair, n = 2p-1, $P_{2p}(0) - (2p-1)^2 P_{2p-2}(0)$, d'où :

$$P_{2p}(0) = (2p-1)^2 (2p-3)^2 (2p-5)^2 \dots 1$$

Calcul de $P_n(1)$:

$$P_{\rm n}(1) - (2n - 1)P_{\rm n-1}(1) = 0$$

$$P_{\rm n}(1) = (2n - 1)(2n - 3) \dots 1$$

AVRIL 2012

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Économie

CORRIGÉ DE LA 2^{ème} COMPOSITION DE MATHÉMATIQUES

Exercice

Le paramètre a est un réel strictement positif, a > 0.

Soit une application $f: [0, a] \to R$ continue, vérifiant pour tout réel $x, 0 \le x \le a$, les deux conditions suivantes :

$$f(x) \neq -1$$
$$f(x). \ f(a-x) = 1$$

Calculer l'intégrale I = $\int_{0}^{a} \frac{1}{1 + f(x)} dx$

On a : f(x) = 1/f(a-x)

Donc
$$1/(1 + f(x)) = f(a-x)/(1 + f(a-x))$$

$$\int_{0}^{a} (1/(1+f(x))) dx = \int_{0}^{a} f(a-x)/(1+f(a-x)) Dx$$

En faisant le changement de variable u = a - x, on a :

$$\int_{0}^{a} (1/(1+f(x))) dx = \int_{0}^{a} f(u)/(1+f(u)) du = \left[\int_{0}^{a} (1+f(x))/(1+f(x))\right] dx = a/2$$

Problème 1

(le thème commun porte sur les suites, mais les trois parties sont indépendantes)

Partie A

Soit la suite (u_n) , $n \in \mathbb{N}$, définie par :

$$u_0 > 0$$
, $u_1 > 0$

(1)
$$\forall n \in \mathbb{N}, u_{n+2} = (u_n^2 u_{n+1})^{1/3}$$

1) Calculer le terme général de la suite u_n .

Indication: on pourra faire intervenir une autre suite (v_n) , telle que $v_n = h(u_n)$, où h est une fonction mathématique simple, permettant de transformer l'expression (1) en une expression (1') liant de façon linéaire v_n , v_{n+1} , v_{n+2} .

- 2) Déterminer la limite de u_n quand n tend vers $+\infty$.
- 1) En passant au logarithme (h = Ln): $Ln(u_{n+2}) = 2/3$. $Ln(u_n) + 1/3$ $Ln(u_{n+1})$

On pose
$$v_n = Ln(u_n)$$
: $v_{n+2} = 2v_n/3 + v_{n+1}/3$

Avec
$$v_0 = Ln(u_0)$$
 et $v_1 = Ln(u_1)$

Equation associée : $3r^2 - r - 2 = 0$, qui admet comme solutions 1 et -2/3.

La forme générale de v_n est $v_n = a + b(-2/3)^n$

$$v_0 = a + b$$

 $v_1 = a - 2b/3$
 $\rightarrow a = (2v_0 + 3v_1)/5$ et $b = 3(v_0 - v_1)/5$

$$u_{n} = \exp[a + b(-2/3)^{n}] = \exp[(2Lnu_{0} + 3Lnu_{1})/5 + (-2)^{n}(Lnu_{0} - Lnu_{1})/(5.3^{n-1})$$

$$u_{n} = (u_{0}^{2}.u_{1}^{3})^{1/5} \exp[(-2)^{n}3^{1-n}Ln((u_{0}/u_{1})^{1/5}]$$

2) Quand n tend vers $+\infty$, u_0 tend vers $(u_0^2u_1^3)^{1/5}$

Partie B

Soit la suite (u_n) , $n \in \mathbb{N}$, définie par :

$$u_0 > 0$$
, $u_1 > 0$

(2)
$$\forall n \in \mathbb{N}, u_{n+2} = 2 u_n u_{n+1} / (u_n + u_{n+1})$$

1) Calculer le terme général de la suite u_n .

Indication : on pourra faire intervenir une autre suite (v_n) , telle que $v_n = h(u_n)$, où h est une fonction mathématique simple, permettant de transformer l'expression (2) en une expression (2') liant de façon linéaire v_n , v_{n+1} , v_{n+2} .

- 2) Déterminer la limite de u_n quand n tend vers $+\infty$.
- 1) On pose $v_n = h(u_n) = 1/u_n$: on obtient alors $v_{n+2} = (v_n + v_{n+1})/2$ Equation associée: $2r^2 - r - 1 = 0$, qui admet comme solutions 1 et -1/2.

La forme générale de v_n est $v_n = a + b(-1/2)^n$

$$v_0 = a + b$$
$$v_1 = a - b/2$$

d'où :
$$a = (v_0 + 2v_1)/3$$
 et $b = 2(v_0 - v_1)/3$

$$v_n = 1/u_n = (a + b(-1/2)^n)$$

$$u_n = 1/(a + b(-1/2)^n) = 1/[(1/u_0 + 2/u_1)/3 + 2(1/u_0 - 1/u_1)/3.(-1/2)^n)$$

$$u_n = 1/[(1/u_0 + 2/u_1)/3 + (-1)^n (1/u_0 - 1/u_1)/3.(2)^{1-n})$$

2) Quand n tend vers $+\infty$, $(-1/2)^n$ tend vers 0, et u_n tend vers $1/a = 3u_0u_1/(2u_0 + u_1)$

Partie C

Soit la suite (u_n) , $n \in \mathbb{N}$, définie par :

$$u_0 = u_1 = u_2 = 1$$

(3)
$$\forall n \in \mathbb{N}, u_{n+3} = (1 + u_{n+2}u_{n+1}) / u_n$$

- 1) Calculer les premiers termes de (u_n) , pour n = 3 à 8.
- 2) Montrer par récurrence que l'on peut écrire la suite (u_n) sous la forme (4):

(4)
$$\forall n \ge 0, u_{n+4} = a u_{n+2} + b u_n$$

où a et b sont des entiers que l'on déterminera.

- 3) En déduire que $\forall n \in \mathbb{N}, u_n \in \mathbb{N}^*$.
- 1) On calcule simplement que $u_3 = 2$, $u_4 = 3$, $u_5 = 7$, $u_6 = 11$, $u_7 = 26$, $u_8 = 41$.
- 2) En écrivant $u_4 = 3 = a + b$ et $u_5 = 7 = 2a + b$, on trouve a = 4 et b = -1.

Soit la relation : $u_{n+4} = 4u_{n+2} - u_n$

Elle est vraie au rang 0.

Supposons la relation vraie au rang n.

Montrons que $u_{n+5} = 4u_{n+3} - u_{n+1}$

D'après la relation (3),
$$u_{n+5} = (1 + u_{n+4}u_{n+3}) / u_{n+2} = (1 + (4u_{n+2} - u_n)u_{n+3}) / u_{n+2}$$

 $u_{n+5} = (1 + 4u_{n+2}u_{n+3} - u_nu_{n+3}) / u_{n+2}$

Or
$$u_{n+3}$$
. $u_n = 1 + u_{n+2}u_{n+1}$

D'où
$$u_{n+5} = (1 + 4u_{n+2}u_{n+3} - (1 + u_{n+2}u_{n+1}))/u_{n+2} = (4u_{n+2}u_{n+3} - u_{n+2}u_{n+1}))/u_{n+2}$$

C'est-à-dire $u_{n+5} = 4u_{n+3} - u_{n+1}$

La relation est vraie au rang n+1.

3) Il s'en suit directement que $u_n \in \mathbb{N}^*$.

Problème 2

Partie 1

Soit A un réel non nul.

Montrer que, pour tout n entier non nul, on peut déterminer une suite unique de n+1 nombres réels $(t_0, t_1, \ldots, t_{n-1}, t_n)$ vérifiant les trois conditions suivantes :

(i)
$$t_0 = 0, t_n = A$$

(ii)
$$t_0 < t_1 < \dots t_{n-1} < t_n$$

(iii)
$$\forall k \in \{0, ..., n-1\} \ t_{k+1} - t_k = A/n$$

On trouve immédiatement que $t_k = kA/n$, pour k allant de 0 à n.

Partie 2

Soit la fonction $f:[0,1] \to R$, continue et strictement positive.

1) Montrer que, pour tout n entier non nul, il existe dans $[0, 1]^{n+1}$ une suite unique de n+1 nombres réels $(x_0, x_1, \ldots, x_{n-1}, x_n)$ vérifiant les trois conditions suivantes :

(i)
$$x_0 = 0, x_n = 1$$

(ii)
$$x_0 < x_1 < \dots x_{n-1} < x_n$$

(iii)
$$\forall k \in \{0, ..., n-1\} \int_{x_k}^{x_{k+1}} f(t) dt = \frac{1}{n} \int_{0}^{1} f(t) dt$$

2) Soit
$$U(n) = \frac{1}{n} \sum_{k=0}^{n} f(x_k)$$
.

Déterminer la limite L de U(n) quand n tend vers $+\infty$.

3) Etudier le cas particulier de $f(x) = e^x$

1) Posons $F(x) = \int_{0}^{x} f(t).dt$, qui existe d'après les hypothèses sur f; en outre la dérivée

F'(x) = f(x) > 0 donc F est strictement croissante sur [0, 1], et F est donc inversible.

Posons
$$t_k = F(x_k)$$
, et $A = \int_0^1 f(t) dt$.

On cherche une suite de n+1 nombres entre 0 et 1 vérifiant les 3 conditions de la partie 1 :

(i)
$$t_0 = 0, t_n = A$$

(ii)
$$t_0 < t_1 < \dots t_{n-1} < t_n$$

(iii)
$$\forall k \in \{0, ..., n-1\}$$
 $t_{k+1} - t_k = A/n$

Donc $t_k = kA/n$, pour k allant de 0 à n.

D'où $x_k = F^{-1}(kA/n)$, pour k allant de 0 à n.

En outre, puisque F et donc F^{-1} sont strictement croissantes, les x_k sont rangés en ordre croissant $x_0 < x_1 < \dots x_{n-1} < x_n$

2)
$$U(n) = \left[\sum_{k=0}^{n} f(x_k)\right]/n = \left[\sum_{k=0}^{n} f(F^{-1}(kA/n))\right]/n$$
, qui converge vers :

$$A^{-1} \int_{0}^{A} f(F^{-1}(t) dt] = B/A$$

Où B =
$$\int_{0}^{A} f(F^{-1}(t) dt]$$

Faisons le changement de variable $u = F^{-1}(t)$, ou t = F(u), dt = f(u) du

B =
$$\int_{0}^{1} f(u) f(u) du = \int_{0}^{1} f^{2}(u) du$$

On en déduit que L =
$$\int_0^1 f^2(u) du / \int_0^1 f(u) du$$

3) Un calcul simple donne A = e - 1.

De même, $x_k = Ln(k(e-1)/n)$

$$B = (e^2 - 1)/2$$
 et donc $L = (e + 1)/2$

AVRIL 2012

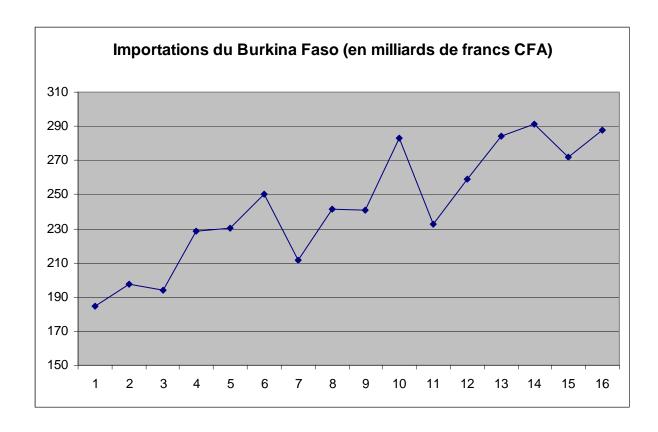
CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Économie

CORRIGÉ DE L'ANALYSE D'UNE DOCUMENTATION STATISTIQUE

Exercice 1

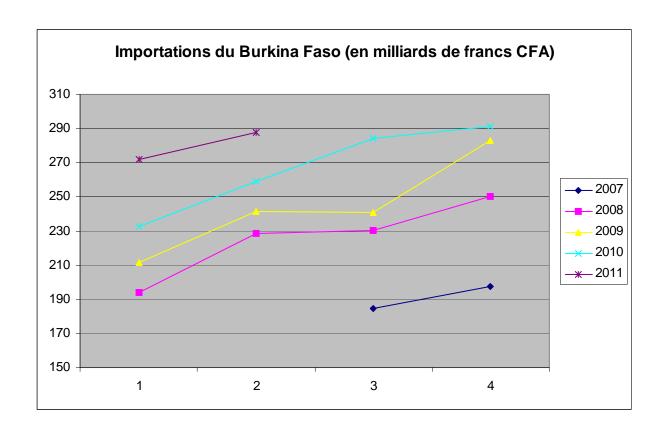
1. a.



On va réaliser notre prévision via un ajustement linéaire avec la méthode des moindres carrées.

1. b.

Importations = 6.5 t + 187.8 avec t qui varie de 1 à 16.



On constate qu'il a un effet saisonnalité : en l'occurrence, le 4^{ème} trimestre donne toujours un chiffre plus élevé et à l'inverse, le 1^{er} trimestre est celui pour lequel les importations sont plus basses. Par ailleurs, le montant des importations annuelles augmente régulièrement.

2. b.

t	Importations (1)	Estimation à partir du modèle (2)	rapport (1)/(2)
1	184,3	194,3	0,948
2	197,7	200,8	0,984
3	194,0	207,3	0,936
4	228,5	213,8	1,069
5	230,1	220,3	1,044
6	250,2	226,8	1,103
7	211,8	233,3	0,908
8	241,4	239,8	1,007
9	240,8	246,3	0,978
10	283,0	252,8	1,120
11	232,4	259,3	0,896
12	258,9	265,8	0,974
13	284,5	272,3	1,045
14	291,4	278,8	1,045
15	272,1	285,3	0,954
16	287,6	291,8	0,986

Le coefficient saisonnier du 1^{er} trimestre s'obtient en faisant une moyenne arithmétique des coefficients des trimestres concernés (points t=3, t=7, t=11, t=15), soit 0,923.

Le coefficient saisonnier du 2^{ème} trimestre s'obtient en faisant une moyenne arithmétique des coefficients des trimestres concernés (points t=4, t=8, t=12, t=16), soit 1,009.

Le coefficient saisonnier du 3^{ème} trimestre s'obtient en faisant une moyenne arithmétique des coefficients des trimestres concernés (points t=1, t=5, t=9, t=13), soit 1,004.

Le coefficient saisonnier du 4^{ème} trimestre s'obtient en faisant une moyenne arithmétique des coefficients des trimestres concernés (points t=2, t=6, t=10, t=14), soit 1,063.

La moyenne des 4 coefficients est bien de 1 donc il n'y a pas lieu de les corriger. On observe que le 4^{ème} trimestre a le plus fort coefficient et que celui du premier trimestre le plus faible.

3. a. Les montants sont exprimés en Mds de Francs CFA

	Estimation à
t	partir du modèle
19	311,3
20	317,8
21	324,3
22	330,7

3. b. Les montants sont exprimés en Mds de Francs CFA

	Estimation à	Estimation corrigée des	
	partir du	variations saisonnières	
t	modèle		
19	311,3	311,3/0,923=337,3	
20	317,8	317,8/1,009=315,0	
21	324,3	324,3/1,004=323,0	
22	330,7	330,7/1,063=311,1	

Exercice 2

Pas de corrigé type sauf qu'il fallait évoquer le fait que certains pays ne donnaient que des séries brutes alors qu'il y a des phénomènes de variations saisonnières : exemple du Sénégal où le 3ème trimestre est toujours moins bon que le reste de l'année. Il fallait aussi évoquer que les comparaisons étaient difficiles à faire compte tenu du fait que les années de base ne sont pas identiques.