

Chimie

Baccalauréat Scientifique Session de 2002 Série C-D

EXERCICE-I: CHIMIE ORGANIQUE

(5 pts)

- 1. On considère le 2-méthylbutan-2-ol et le 2-methylbutan-1-ol
- 1.1. Ecrire la formule semi développée de chacune de ces molécules. Indiquer la classe de chacun de ces alcools.
- 1.2. Quel type d'isomérie existe entre ces composés?
- 1.3. Toutes ces molécules sont-elles chirales? Justifier la réponse.
- 1.4. Représenter, si possible, les deux énantiomères de chaque molécule chirale en perspective.
- 2. le pentan-2-01 est oxydé par les ions dichromates en milieu acide.
- 2.1.Donner la nature du composé organique obtenu. Indiquer un test pouvant caractériser ce composé.
- 2.2. Ecrire l'équation bilan de la réaction.
- 3. l'alanine a pour formule: CH3-CH-COOH NH2
- 3.1.A quelle famille appartient ce composé?
- 3.2.Donner son nom dans la nomenclature systématique
- 3.3.A l'état pur, l'alanine se présente sous forme d'ion.
- 3.3.1. Donner le nom et la formule générale de cet ion.
- 3.3.2. Donnez une propriété caractéristique de cet ion

EXERCICE 2: ACIDES ET BASES

(5 pts)

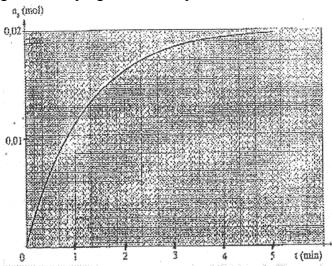
- 1. Donner la définition d'un acide selon Bronsted.
- Qu'est-ce qu'un couple acide base?
- 2. Pour préparer 100 ml de solution de chlorure d'ammonium (NH₄CI), on dissout 0,32 g de solide dans l'eau, la solution obtenue a alors un pH = 5,2 à 25°C.
- 2.1. Ecrire l'équation d'ionisation de ce composé dans l'eau.
- 2.2. Calculer la concentration initiale en ion ammonium.
 - Montrer que l'ion ammonium est un acide faible.
- 2.3. Ecrire l'équation-bilan de la réaction entre l'ion ammonium et l'eau.
- 2.4.le couple (NH₄⁺/ NH₃) a pour pK_A = 9,2
 - Définir la constante d'équilibre de cette réaction.
 - Déterminer sa valeur numérique.
- 2.5.Déterminer les espèces chimiques majoritaires dans la solution.
- 3. On ajoute 15 ml de solution d'hydroxyde de potassium (KOH) aux 100 ml de solution de chlorure d'ammonium précédente. On obtient alors une nouvelle solution S de pH = 9,2 à 25°C.

On rappelle les valeurs des pK_A des autres couples acideÆiase mis en jeu:

 $pK_A (H_30^+/H_20) = 0.0$; $pKA (H_20/HO^-) = 14.0$.

- 3.1. Classer les couples acide/base par ordre croissant d'acidité.
- 3.2. Quelle est la réaction prépondérante entre les couples (NH₄⁺/NH₃) et (H₂O/HO⁻)?
 - Calculer la constante Kr de cette réaction.
 - Quelle conclusion peut-on en tirer?

www.collectionbrain.com


- 3.3. Déterminer la concentration de la solution d'hydroxyde de potassium utilisée.
- 3.4. Comment appelle-t-on la solution S précédente?
 - Quelle propriété présente-t-elle ?

On donne: Produit ionique de l'eau: $K_E = 10^{-14}$; H = 1 g.mol⁻¹; N = 14 g.mol⁻¹; Cl = 35,5 g.mol⁻¹

EXERCICE III : CINETIQUE CHIMIQUE (5 pts)

- 1. Définir les termes suivants: vitesse moyenne de formation d'un corps; vitesse instantanée de formation.
- 2. On veut étudier la cinétique de la réaction entre le thiosulfate de sodium (Na₂S₂O₃) et l'acide chlorhydrique.

Pour cela, on verse 10 ml de solution d'acide chlorhydrique de concentration C = 5 mol. L⁻¹ dans 40 ml d'une solution de thiosulfate de sodium de concentration C' =0,5 mol.L⁻¹. Il se dégage du dioxyde de soufre, et le mélange blanchit progressivement par formation du soufre solide.

- 2.1. Ecrire l'équation bilan de la réaction.
- 2.2.L'étude de l'évolution de la formation du soufre en fonction du temps conduit à la courbe cicontre, où n_s représente la quantité de matière de soufre formé.
 - 2.2.1. Déterminer la valeur limite de n_s
 - Quel est le réactif en excès?
 - 2.2.2. Calculer la vitesse moyenne de formation du soufre(en mol.min⁻¹) entre les instants $t_0=0$ et $t_1=2$ min.
- 2.2.3. Déterminer la vitesse moyenne de disparition des ions hydroniums entre ces mêmes instants.
- 2.2.4. Calculer la vitesse instantanée de formation du soufre à la date t = 2 minutes.
- 2.3. Avec une nouvelle solution d'acide chlorhydrique de concentration 3 mol.L⁻¹. on reprend l'expérience précédente, tout en conservant les mêmes volumes de réactifs et la concentration de la solution de thiosulfate de sodium.
 - Dire, en justifiant la réponse, si la valeur limite trouvée à la question 2.2.1. est modifiée.
 - la vitesse de formation du soufre est-elle également modifiée?

EXERCICE IV: TYPE EXPERIMENTAL

(5 pts)

Dans un laboratoire de lycée, un élève de Terminale veut préparer une solution décimolaire S d'acide chlorhydrique. Pour cela, il dispose d'une solution commerciale S_0 contenue dans une bouteille qui porte les indications suivantes: "Acide chlorhydrique: masse volumique μ =1,2 kg.l⁻¹; Pourcentage en masse d'acide chlorhydrique: 37 %; Pictogramme:

www.collectionbrain.com

Cet élève introduit d'abord 100 ml d'eau distillée dans une fiole jaugée de 500 ml. Ensuite, il prélève un volume V₀ de la solution acide S₀ qu'il ajoute dans la fiole contenant déjà de l'eau. Puis il complète le volume de la solution jusqu'au trait de jauge avec de l'eau distillée. Il note S la solution acide ainsi obtenue.

- 1. Donner la signification du symbole observé sur l'étiquette de la bouteille.
 - Donner un exemple de précaution nécessaire à la sécurité corporelle pendant la manipulation.
 - Représenter et nommer une des verreries utilisées pour préparer la solution S.
- 2. Pourquoi l'élève a-t-il d'abord introduit de l'eau dans la fiole avant d'y verser l'acide?
- 3. Quel est le volume V₀ d'acide chlorhydrique prélevé par l'élève pour préparer la solution S?
- 4. Afin de vérifier la concentration de la solution S, l'élève procède au dosage pH-métrique de cette solution par une solution d'hydroxyde de sodium (NaOH) de concentration 0,04 mol.L'¹. Pour cela, il verse progressivement un volume V_s de solution S dans 20mL d'hydroxyde de sodium, en prenant soin de noter la valeur du pH après chaque ajout, ce qui conduit aux résultats du tableau ci-dessous

V _s (mL)	0	1	2	3	4	5	6	7	8	8,5	9	10	11	12	13
pН	12,6	12,5	12,4	12,3	12,5	12,1	11,9	11,7	11,1	3,6	2,7	2,3	2,1	2,0	1,9

- 4.1. Faire un schéma annoté du dispositif utilise pour le dosage.
- 4.2. Tracer la courbe $pH = f(V_s)$: Echelle: 1 cm pour 1 mL de solution. 1 cm pour 1 unité de pH.
 - Déterminer, par la méthode des tangentes, le volume équivalent V_{se}.
- 4.3.En déduire la concentration de la solution 8.
- 4.4.Cet élève peut également procédera un dosage colorimétrique pour déterminer cette concentration.

Dire, en justifiant le choix, quel est dans la liste ci-dessous, l'indicateur coloré adapté pour ce dosage, et indiquer l'évolution de sa teinte lors du virage. 0,5pt

Indicateur: Zone de virage

Hélianthine Rouge 3,1 - 4,4 Jaune Bleu de bromophénol Jaune 3,0 - 4,6 Bleu Bleu de bromothymol Jaune 6,0 - 7,6 Bleu

On donne: $H = 1 \text{ g.mol}^{-1}$; $Cl = 35,5 \text{ g.mol}^{-1}$