

Mathématiques

Baccalauréat série A

Session 2016

Exercice 1

- 1. Résoudre dans \mathbb{R} l'équation : $(x-2)(2x^2+5x-3)=0$.
- 2. Montrons que : $2x^3 + x^2 13x + 6 = (x 2)(2x^2 + 5x 3)$.
- 3. En déduire des questions précédentes la résolution de l'équation : $2(\ln x)^3 + (\ln x)^2 13(\ln x) + 6 = 0$.

Exercice 2

La production de la société Elemva a été relevée pendant 10 ans. Les années sont notées x_i et la production exprimée en tonnes est notée y_i . On a obtenu le tableau ci-dessous.

Années (x_i)	1	2	3	4	5	6	7	8	9	10
Productions(y_i)	3	4	5,1	6	7,5	8	9,4	10,5	11,5	13

- 1. Représenter le nuage de points de cette série statistique dans un repère orthonormé.
- 2. Déterminer le point moyen G du nuage de cette série .
- 3. Un expert veut faire des prévisions pour la production des années à venir de la société. Il propose l'ajustement de Mayer pour cette série.
 - a) Montrer qu'une équation cartésienne de la droite d'ajustement de cette série par la méthode de Mayer est : y = 1,072 x + 1,904.
 - b) Utiliser cette équation pour estimer la production de la société pendant la douzième année.

Problème

Soit f la fonction définie sur l'intervalle : $]0; +\infty[par f(x) = \ln x + \ln(x+1)]$.

On donne (\mathcal{C}) sa représentation graphique dans le plan rapporté à un repère orthonormé (0; \vec{t} ; \vec{j}) d'unité graphique 1cm.

- 1. a) Calculer $\lim_{x\to 0} f(x)$.
 - b) Quelle interprétation graphique peut-on en déduire pour la courbe (C)?
 - c) Calculer $\lim_{x\to+\infty} f(x)$.
- 2. On note f' la fonction dérivée de la fonction f.

Montrer que
$$f'(x) = \frac{2x+1}{x(x+1)}$$
.

www.collectionbrain.com

- 3. a) Etudier pour tout x de l'intervalle $]0; +\infty[$, le signe f'(x).
 - b) En déduire le tableau de variation de f sur l'intervalle $]0; +\infty[$.
- 4. Recopier et compléter le tableau suivant : (Les valeurs de f(x) seront arrondies à 10^{-1} près).

х	0,1	0,5	1	2	4
f(x)			0,7		

- 5. Tracer la courbe (\mathcal{C}) dans le repère (0; \vec{i} ; \vec{j}).
- 6. Résoudre dans $]0; +\infty[$ l'équation f(x) = 0. (On vérifiera que f(x) s'écrit sous la forme $f(x) = \ln[x(x+1)]$ et on donnera la valeur exacte de la solution).
- 7. Montrer que la fonction F définie sur $]0; +\infty[$ par $F(x) = x \ln x + (x+1) \ln(x+1) 2x$ est une primitive de f sur l'intervalle $]0; +\infty[$.