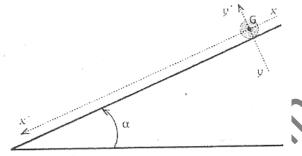


Physique

Baccalauréat Scientifique Session de 2015 Série D-TI

EXERCICE I: mouvements dans les champs de forces et leurs applications


7 points

1. Mouvement dans le champ de pesanteur :

4 points

Sur la ligne d'un plan incliné d'angle a inconnu, on dépose au sommet du plan une bille ponctuelle de masse m = 100g. Abandonnée à elle-même, elle se met en translation.

Le schéma ci-contre traduit l'événement. Les frottements seront négligeables.

Dans le repère proposé dans le schéma,

- a) déterminer l'expression algébrique a_G de l'accélération du centre d'inertie G de la bille.
- b) établir les équations horaires du mouvement de la bille dans le repère ci-dessus.
- c) Au cours de la $n^{ième}$ seconde du mouvement, la bille parcourt une distance d. Etablir l'expression de d en fonction de n, g et a
- d) Calculer la valeur de a pour n = 4 et d = 12,25m.

Prendre $g = 10 \text{m/s}^2$.

2. Mouvement d'une particule dans un champ électrique uniforme :

3 points

L'équation cartésienne de la trajectoire d'une particule de charge q négative, entrée à la vitesse initiale $\overrightarrow{V0}$ dans le champ électrique règnant entre les armatures horizontales d'un condensateur- plan est de la forme : $y = \frac{1}{2} \frac{|q|E}{m} \frac{x^2}{V0^2 (cos\alpha)^2} + xtan x$

- a) Faire un schéma annoté traduisant la situation qui a permis d'obtenir une telle équation. On précisera notamment l'orientation :
 - des axes du repère d'étude,
 - du vecteur-vitesse initiale V0,
 - du vecteur champ électrique \vec{E} ,
 - de la concavité de la trajectoire que l'on reproduira entre les armatures.
- b) On donne E = $10^6 N/C$, $\alpha = 20^\circ$, $v_0 = 10^6 m/s$ l (longueur des armatures du condensateur) = 15cm m = $9,1.10^{-31}$ kg et $q = -1,6.10^{-19}$ C

En admettant que la particule sorte du champ électrique, calculer sa vitesse v_s à la sortie.

EXERCICE II : système oscillant - pendule simple

4 points

- 1. Schématiser puis décrire un pendule simple.
- 2. Pour des oscillations de faible amplitude, on admet que la trajectoire de la masse d'un pendule

www.collectionbrain.com

simple est un segment de droite décrit avec la loi horaire : $x(t) = 22 \cos \pi \left(\frac{4}{5}t - \frac{1}{3}\right) \text{ cm}$

a) Calculer sa période propre T puis en déduire sa longueur l, prendre $g = 10 \text{m} / \text{s}^2$ Déterminer l'expression de l'élongation angulaire $\theta(t)$ du pendule ci-dessus puis en déduire son élongation maximale θ_m .

EXERCICE III : les phénomènes vibratoires et corpusculaires :

5 points

1. Phénomène vibratoire : 3 points

A la surface d'une eau contenue dans une cuve à ondes, on laisse tomber des gouttes d'eau à raison de 15 gouttes par seconde. La réflexion des ondes sur les bords de la cuve est négligeable.

- a) Schématiser l'aspect pris par la surface de l'eau.
- b) Le point O de chute des gouttes est considéré comme la source de l'onde mécanique qui se propage. A l'instant initial L=0, le mouvement de l'origine est descendant.
 - Déterminer la nature de l'onde et sa fréquence f.
 - Ecrire l'équation horaire du mouvement de la source O puis celui d'un point M situé à la distance d = 5cm de cette source.

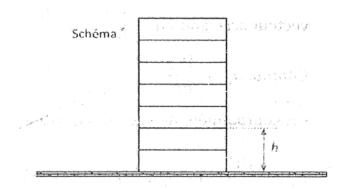
On donne : v (célérité de l'onde)= 15cm/s ; a (amplitude) = 1cm.

2. La radioactivité : 2 points

A l'instant t quelconque, on dispose d'une masse m = 0.5g d'un radioèlément de demi-vie T = 2 jours.

- a) Calculer sa constante radioactive A
- b) Déterminer la masse m' de cet élément que l'on possédait 15 jours plus tôt.

EXERCICE IV: expérience - 4 points


Lors d'une séance de travaux pratiques, on remet à chaque élève d'une classe de TD une fiche de TP se présentant ainsi qu'il suit :

Fiche de TP

Titre du TP : le champ de pesanteur

- 1. Objectif : la mesure de ('accélération g de la pesanteur dans la salle de TP.
- 2. Matériel expérimental
 - 01 chronomètre électronique
 - 01 masse marquée de 100\$

3. Schématisation

4. Protocole expérimental

Un observateur se place successivement à la fenêtre de chaque étage d'un bâtiment II tend horizontalement sa main tenant fa masse marquée *m*. Il la laisse tomber en chute sans vitesse initiale.

www.collectionbrain.com

A l'aide du chronomètre, on mesure les durées des différents essais de chute.

5. Tableau de mesures

La mesure des durées de chute correspondant aux altitudes de la masse par rapport au sol a permis d'obtenir les valeurs suivantes :

h (m)	20	16	12	8	4
t[s)	2,02	1,8	1,56	1,3	0,9

6. Exploitation

6.1. Etablir l'équation horaire de la masse marquée à chaque lâcher. On négligera la résistance de l'air.

6.2.Tracer la courbe $t^2 = f(h)$

Echelle:

Axe des abscisses : 1 cm pour 1m
Axe des ordonnées : 1 cm pour 10s²

6.3.Donner la nature de cette courbe

6.4. Déterminer la valeur expérimentale de l'accélération g_{exp} de la pesanteur du lieu de l'expérience.

