

Mathématiques

PROBATOIRE Série D

Session 2011

Exercice 1

Un commerçant a besoin d'une somme d'argent de 2 000 000Fcfa pour monter une affaire.

Deux possibilités d'emprunt s'offrent à lui :

Possibilité 1 : Un groupe de tontine lui donne la somme pour deux ans avec un taux d'intérêt mensuel composé de 2%.

Possibilité 2 : Une banque lui prête cette somme pour deux ans aux conditions suivantes :

- -à la fin du premier mois, il doit rembourser 240 000F.
- -puis chaque mois, il rembourse avec 10 000F de moins que le mois précédent.
- 1. Pour chacune de ces possibilités, calculer la somme totale à rembourser.
- 2. En déduire l'emprunt le plus avantageux.

Exercice2

Après un contrôle, les notes de mathématiques de 60 élèves de $1^{\it er}$ D ont été regroupées dans le tableau suivant :

Notes	[0;4[[4;8[[8;12[[12;16[[16;20[
Nombres d'élèves		12	15		3
Fréquences	0,3				
Effectifs cumulés croissants		30			

- 1. Recopier et compléter ce tableau.
- 2. Calculer le pourcentage des élèves ayant une note supérieure ou égale à 12/20.
- 3. L'épreuve de mathématiques du contrôle est constituée de 3 exercices et d'un problème. L'enseignant dispose dans sa banque d'épreuves de 18 exercices (dont 4 en statistiques, 9 en équations, 5 en trigonométrie) et 10 différents.
 - (a) Combien d'épreuves différentes peut-il composer ?
 - (b) Donner le nombre d'épreuves contenant exactement un exercice de statistique et un exercice de trigonométrie.

www.collectionbrain.com

Problème

Partie A:

On considère une fonction f définie sur $[-1; +\infty[$ par $f(x) = \frac{2x-1}{x+2};$ on note (C) la courbe représentative de f dans un plan muni d'un repère orthonormé d'unité 2cm.

- 1. Vérifier que sur l'intervalle sur $[-1; +\infty[f(x) = 2 \frac{5}{x+2}]$
- 2. Calculer la limite de f en $+\infty$ et en déduire l'existence d'une asymptote (D) à (C).
- 3. (a) Calculer f'(x) où f' est la fonction dérivée de f.
 - (b) Dresser le tableau de variation de f.
 - (c) Déterminer une équation de la tangente (T) à (C) au point d'abscisse 3.
- 4. Tracer les droites (T) et (D) puis la courbe (C).
- 5. On pose g(x) = f(x) 1; (C') la courbe représentative de la fonction g.

 Indiquer la transformation qui permet de tracer (C') à partir de (C), puis tracer (C').

Partie B:

On considère les points P(-1, -3) et Q(3, 1).

- 1. (a) Montrer que P et Q appartiennent à la courbe (C).
 - (b) Déterminer l'ensemble des points M du plan tels que $MP^2 + MQ^2 = 32$.
- 2. On considère l'expression P(x) suivante : $P(x) = \cos 4x 5\cos 2x + 2 \,$ dans laquelle x est un nombre réel appartenant à l'intervalle $]-\pi$; π].
 - (a) Montrer que $P(x) = 2\cos^2 x 5\cos 2x + 1$.
 - (b) Résoudre alors l'équation P(x) = -1.
 - (c) Placer les solutions sur un cercle trigonométrique.