

Mathématiques

PROBATOIRE Série C

Session 2009

Exercice 1

Pour chacune des questions de cet exercice, trois réponses vous sont proposées parmi lesquelles une seule est juste ; reproduire sur votre feuille de composition, le numéro de la question et celui de la réponse juste correspondante.

N.B: Aucun calcul n'est exigé dans cet exercice

- 1. Dans un ensemble à *n* éléments, s'il y a autant de parties à deux éléments que de parties à quatre éléments, alors *n* est solution de l'équation du second degré :
- (a) $n^2 + 5n 6 = 0$; (b) $n^2 5n 6 = 0$; (c) $n^2 5n + 6 = 0$.
- 2. On considère une suite géométrique (U_n) , de premier terme $\frac{1}{2}$, et de raison $-\frac{1}{2}$. On pose $S_n = U_0 + U_1 + U_2 + \dots + U_n$. S_n est égal à :

(a)
$$\frac{1}{3} \left[1 - \left(\frac{1}{2} \right)^n \right]$$
, (b) $\frac{1}{3} \left[1 - (-1)^n \left(\frac{1}{2} \right)^n \right]$ (c) $\frac{1}{3} \left[1 - (-1)^{n+1} \left(\frac{1}{2} \right)^{n+1} \right]$

- 3. Le plan vectoriel est rapporté à une base (\vec{i}, \vec{j}) ; f est un endomorphisme définie pour tout $\vec{u}(x,y)$ par $f(\vec{u}) = (2x+y)\vec{i} + (4x+2y)\vec{j}$. L'ensemble des vecteurs \vec{u} tels que $f(\vec{u}) = 4\vec{u}$ est :
- (a) La droite vectorielle dirigée par le vecteur $\vec{u}_0(1; 2)$;
- (b) La droite vectorielle dirigée par le vecteur $\vec{u}_1(-1;2)$;
- (c) $\{0\}$.

Exercice 2

On considère la fonction numérique f définie pour tout x par $f(x) = \frac{4x^2 - 12}{|x| + 2}$. (C) désigne, dans le plan rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$, la courbe représentative de f.

- 1. (a) Déterminer les limites de f(x) quand x tend vers l'infini.
 - (b) Etudier la dérivabilité de f en $x_0 = 0$.
- 2. Montrer que, lorsque x tend vers l'infini, la courbe(\mathcal{C}) admet deux demi-asymptotes (T) et (T') dont on donnera les équations cartésiennes respectives.
- 3. Montrer que *f* est paire.
- 4. Etudier les variations de f dans \mathbb{R}^- .
- 5. Tracer (C), (T) et (T').

Problème

Partie A:

Dans le plan orienté, on considère le triangle équilatéral direct ABC. On construit les triangles équilatéraux directs ADB et ACE. G_1 et G_2 désignent respectivement les centres de gravité des triangles ADB et ACE.

- 1. Montrer que (CD) et (BE) sont les médiatrices respectives de [AB] et de [AC].
- 2. On considère la rotation r de centre A qui transforme D en C.
- (a) Déterminer l'image de B par r.
- (b) Déterminer l'angle de la rotation r.
- (c) Démontrer de deux manières différentes que G_2 est l'image de G_1 par r.
- 3. Soit C' l'image de C par r; montrer que C est le symétrique de B par rapport à A.
- 4. *I* est le point d'intersection de (*BE*) et (*CD*) ; montrer que :
- (a) CD = BE et que mes $(\widehat{BE}, \widehat{CD}) = \frac{2\pi}{3}$.
- (b) *I* est le centre du cercle inscrit au triangle ABC.

Partie B:

Dans l'espace \mathcal{E} , on considère quatre points P, Q, R, S. On appelle J le barycentre du système de points pondérées $\{(P, 1); (R, 3)\}$ et K celui du système de points pondérés $\{(Q, 1); (S, 3)\}$.

- 1. Montrer que $\overrightarrow{PQ} + 3\overrightarrow{RS} = 4\overrightarrow{IK}$.
- 2. Montrer que si *J* et *K* sont des confondus, alors *P*, *Q*, *R* et *S* sont coplanaires.
- 3. On suppose dans la suite que l'espace \mathcal{E} est rapporté au repère $(0, \vec{\imath}, \vec{\jmath})$. (P) et (P') sont deux plans, d'équations cartésiennes respectives : x + y z 2 = 0 et x 2y + z 3 = 0.
- (a) Déterminer deux vecteurs \vec{n} et \vec{n}' respectivement normaux à (P) et (P').
- (b) Montrer que \vec{n} et \vec{n}' ne sont pas colinéaires.
- (c) En déduire la position relative de (P) et (P').