Carrellon Malko, IMIP 2014

INSTITUT DES MINES ET DES INDUSTRIES PETROLIERES

FILIERE: MINES ET CARRIERES

APREUVE DE MATHEMATIQUES 2014 / 2015

Exercice 1

Soient S,T et T' trois ensembles.

1) Montant que $S \cap (T \cup T') = (S \cap T) \cup (S \cap T')$

Nota: si A et B sont 2 ensembles, A=B si seulement si A C B et B C A

Montrons que $S\cap (T\cup T')$ \underline{C} $(S\cap T)\cup (T\cap T')$

Soit $x \in S \cap (T \cup T')$

$$x \in S \cap (T \cup T') \Rightarrow x \in S \text{ et } x \in (T \cup T')$$

$$\Rightarrow x \in S \text{ et } (x \in T \text{ oux } \in T')$$

$$\Rightarrow$$
 $(x \in S \text{ et } x \in T) \text{ ou } (x \in S \text{ et } x \in T')$

$$\Rightarrow x \in S \cap T \ ou \ x \in S \cap T'$$

$$\Rightarrow$$
Sn $(T \cup T') \subseteq (SnT) \cup (SnT')$

(1)

* Réciproquement, montrons que $(S \cap T) \cup (S \cap T') \subseteq S \cap (T \cup T')$

$$x \in (\mathbb{S} \cap \mathbb{T}) S \cup \mathbb{T}') \Rightarrow x \in (\mathbb{S} \cap T) ou \ x \in (\mathbb{S} \cap \mathbb{T}')$$

$$\begin{cases} x \in S \text{ et } x \in T \\ \text{ou} \\ x \in S \text{ et } x \in T' \end{cases}$$

$$\Rightarrow \begin{cases} x \in S \\ \text{et} \\ (x \in S \text{ ou } x \in T') \end{cases}$$

$$\Rightarrow \begin{cases} x \in S \\ \text{et} \\ (x \in T \cup T' \rightarrow x \in S \cap (T \cup T')) \end{cases}$$

$$\Rightarrow (S \cap T) \cup (S \cap T') \subseteq S \cap (T \cup T')$$
 (2)

De (1) et (2) On a(
$$S \cap T'$$
) =($S \cap T$) \cup ($S \cap T'$)

2) Montrons que
$$S \cap (T_1 \cup T_2 \cup ... \cup T_n) = (S \cap T_1) \cup (S \cap T_2) \cup ... \cup (S \cap T_n)$$

Il revient à montrer que $S \cap (\bigcup_{i=1}^n Ti) = \bigcup_{i=1}^n (S \cap Ti)$
Soit $x \in S \cap (\bigcup_{i=1}^n Ti)$
On a $x \in S$ et $x \in \bigcup Ti$

$$\Rightarrow x \in S \text{ et } (\exists! j \text{ tel que } x \in Tj), j \in [1; n]$$

$$\Rightarrow x \in S \text{ et } x \in Tj$$

$$\Rightarrow x \in S \cap Ti$$

$$\Rightarrow x \in (\bigcup_{i=1}^{n} (S \cap Ti)) \ car$$

$$\Rightarrow S \cap (\bigcup_{i=1}^{n} Ti) \ \underline{C} \ \bigcup_{i=1}^{n} (S \cap Ti) \ (1)$$

$$S \cap Tj\underline{C} \ (\bigcup_{i=1}^{n} (S \cap Ti) \ et \ donc$$

$$x \in S \cap Tj \Rightarrow x \in \bigcup_{i=1}^{n} (S \cap Ti)$$

Réciproquement, montrons que $\bigcup_{i=1}^{n} (S \cap Ti) \subseteq S \cap (\bigcup_{i=1}^{n} Ti)$

Soit
$$x \in \bigcup_{i=1}^n (S \cap Ti)$$

$$x \in \bigcup_{i=1}^{n} (S \cap T_i) \Rightarrow (x \in S \cap T_1) \text{ ou } (x \in S \cap T_2) \text{ ou ...ou } (x \in S \cap T_n)$$

$$\Rightarrow (x \in S \text{ et } x \in T_1) \text{ ou } (x \in S \text{ et } x \in T_2) \text{ ou ...ou} (x \in S \text{ et } x \in T_2)$$

$$x \in T_n$$

$$\Rightarrow$$
 $(x \in S)et (x \in T_1) ou x \in T_2) ou ...oux $\in S et$$

$$x \in T_n$$

$$\Rightarrow x \in S \ et \ x \in UT_i$$

$$\Rightarrow x \in S \cap (\bigcup_{i=1}^n Ti)$$

$$\Rightarrow U(S \cap T_i) \subseteq S \cap (UT_i)$$

(1) et (2)
$$\Rightarrow \bigcup_{i=1}^{n} (S \cap T_i) = S \cap (\bigcup_{i=1}^{n} T_i)$$

www.touslesconcours.info

1

Exercice 2

Soit f: N \rightarrow N / f $(xy) = f(x) + f(y) \forall x, y \in N$

Montrons que $f(a^n) = nf(a) \forall a, n \in \mathbb{N}$

D'après l'hypothèse, $f(xy) = f(x) + f(y) \forall x, y \in N$

En particulier pour $y = \underbrace{x \times x \times x \dots \times x}_{(n-1) \text{ fois}} \in \mathbb{N}$, la relation

(*) doit être vérifiée c'est-à-dire :

$$f(xy) = f(x. x \times x \times ... \times x) = f(x) + f(x. x \times x \times ... \times x)$$

$$= f(x) + f(x. x \times x \times ... \times x)$$

$$= f(x) + f(x. x \times x \times ... \times x)$$

$$= f(x) + f(x. x \times x \times ... \times x)$$

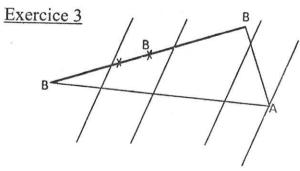
$$= f(x) + f(x. x \times x \times ... \times x)$$

$$= f(x) + f(x. x \times x \times ... \times x)$$

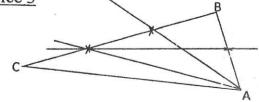
 \Rightarrow f(x ")= nf(x) pour x=a \in N, On peut aussi écrire :

 $F(a^n) = n f(a) \quad \forall a, n \in \mathbb{N}$

2) Enoncé Erroné



Exercice 3



$$BC = 2 AB$$

$$E = milieu [BA]$$

www.touslesconcours.info

2) montrons que F = milieu [AB] et que BF = BE

Dont le triangle ABC, (DF) // (AC), on a d'après la propriété Thalès

$$\frac{BD}{BC} = \frac{BF}{BA} \Rightarrow \frac{\frac{1}{2}BC}{BC} \frac{BF}{BA}$$
; soit AB = 2BF

D'où F E[AB]

et
$$\rightarrow$$
 F = milieu [AB]
BF = $\frac{AB}{2}$

De même,
$$\frac{BD}{BC} = \frac{BF}{BA} \Rightarrow \frac{2BE}{BC} = \frac{BF}{BA}$$
; soit $\frac{2BE}{2AB} = \frac{BF}{AB} \Rightarrow BF = BE$

3 montrons que les triangles ABE et BDF sont congruents et e déduire que Mes EAF = Mes EDF

D'après la figure et la question 2)
$$\begin{cases} BF = BE \\ Mes \ \widehat{ABD} = Mes \ \widehat{FBD} \end{cases}$$

Or Mes
$$\widehat{FBD} = Mes(\widehat{ABE})$$

Or Mes
$$\widehat{FBD} = Mes(\widehat{ABE})$$

$$\Rightarrow \begin{cases} Mes \ \widehat{ABD} = Mes(\widehat{ABE}) = Mes(\widehat{FBD}) \\ BF = BE \end{cases} \Rightarrow \begin{cases} Mes \ \widehat{ABE} = Mes(\widehat{FBD}) \\ et BE = BF \end{cases}$$

Les triangles ABE et BDF

Sont congruents

ABE et FBD sont congruents ⇒ ils ont des angles 2 à 2 égaux.

On a donc la disposition pratique:

$$\frac{A}{D} \frac{B}{B} \frac{E}{F} \Rightarrow \begin{cases} \text{Mes } \widehat{BAE} = \text{Mes } \widehat{FDB} \\ \text{Mes } \widehat{AEB} = \text{Mes } \widehat{FDB} \end{cases}$$
(1)

Or

$$\begin{cases}
Mes \ \widehat{BAE} = Mes \ \widehat{EAF} \\
et \\
Mes \ \widehat{BDF} = Mes \ \widehat{EDF}
\end{cases}$$

(1)
$$\Rightarrow$$
 Mes $\widehat{EAF} = Mes \widehat{EDF}$

4) Montrons que BA = BD et déduire que Mes BAD = Mes BDA
D'après Thalès dans (ABC), (DF) // (AC)

$$\frac{BD}{BC} = \frac{BF}{BA} \implies \frac{BD}{2BD} = \frac{BE}{BA}$$

$$\Rightarrow \frac{BE}{BA} = \frac{1}{2} \text{ or BE} = \frac{BD}{2} \implies \frac{BE}{BA} = \frac{BD/2}{BA} = \frac{1}{2}$$

Soit
$$\frac{BD}{2BA} = \frac{1}{2} \Rightarrow \frac{BD}{BA} = 1 \text{ soit BA} = BD$$

*déduire Mes BAD =MesBDA

D'après le théorème des sinus dans le triangle ABD on a :

$$\frac{BD}{\sin A} = \frac{BA}{\sin D} \text{ or } BD = BA \implies \frac{1}{\sin A} = \frac{1}{\sin D}$$

$$\Rightarrow \sin BAD = \sin BDA$$

$$\Rightarrow BAD = BDA \text{ (car } A \text{ et } D \text{ sont des angles aigus)}$$

Donc Mes \widehat{BAD} = Mes \widehat{BDA}

5) Montrons que MesEAD = Mes FDA et que MesFDA = MesDAC

Considérons que EAD et FDA, on a

Mes
$$\widehat{BAD}$$
 = Mes \widehat{BAE} + Mes \widehat{EAD} (1)

Car Mes
$$\widehat{BAE}$$
 = Mes (\widehat{FAE}) et Mes \widehat{BDF} = Mes \widehat{EDF})

www.touslesconcours.info

(DF) // (AC) et les 2 droite ont pour droite d'intersection commune (AD) par conséquent les angles FDA et DAC sont alternes-internes

- 6) Déduire que (AD) est bissectrice de CAE

 D'après ce qui précède, Mes DAC = Mes FDA

 Mes DAC = Mes EAD
- $\begin{cases}
 Mes CAE = Mes DAC + Mes EAD \\
 Mes DAC = Mes EAD
 \end{cases} (1)$
 - (1) et (2) ⇒ (AD) est la bissectrice de l'angle CAE