The Color

CORRECTION OF 2013 SESSION

- 1) Determination of x and y- intercepts of the function $f(x) = \frac{x^2 5x + 4}{x^2 3}$ It is easily clear to see that $f(0) = -\frac{4}{3}$ and f(1) = f(4) = 0 therefore we can just conclude the x and y- intercepts are 1, 4 and -4/3 thus 1 - B
- 2). The function $y = \sqrt[3]{x}$ increase and symmetric with respect to origin because it is the reciprocal of the function $f(x) = x^3$ hence 2 B
- D is the function of the limit of the CAUCHY sequence therefore 3 D

www.touslesconcours.info

4)
$$f(x) = x^3 + 2x + 2, x \in \square \text{ the zero of the function f is the}$$
 real x_0 such that $-1 \le x_0 \le 0$

We know that f(-1) = -1 and f(0) = 2 and according to the intermediate value theorem;

$$f(0) \times f(-1) = -2 < 0$$
. Hence $x_0 \in [-1,2]$ therefore $\underline{4 - B}$

5)
$$y(t) = Me^{\frac{1}{3}t \ln(10)} \text{ because } \begin{cases} y(0) = M \\ y(3) = Me^{\frac{1}{3}(3)\ln(10)} = Me^{\ln(10)} = 10M \end{cases}$$
Therefore $\underline{\mathbf{5} - \mathbf{D}}$.

6) Knowing that $U_0 = 1$ million $= 10^6$
At the end of the first year we have $U_1 = U_0 + 5\%U_0 = 1.05U_0$.

Therefore $\underline{5-D}$

6) Knowing that
$$U_0 = 1$$
 million = 10^6

At the end of the first year we have $U_1 = U_0 + 5\%U_0 = 1.05U_0$.

At the end of the second year we have

$$U_2 = (U_1 + 10^6) + 5\%(U_1 + 10^6) = 1.05(U_1 + 10^6)$$

We can the generalize that $U_{n+1} = 1.05(U_n + 10^6)$ the calculation of

$$U_{25} = 50.133.250$$

Therefore 6 - C

$$s_n = \sum_{n=1}^{\infty} \frac{3+5n}{4} x^{n+1} a_n = \frac{3+5n}{4}; a_{n+1} = \frac{3+5(n+1)}{4}$$

$$l = \lim_{x \to \infty} \frac{a_{n+1}}{a_n} = \lim_{x \to \infty} \frac{5(n+1)+3}{5n+4} \Rightarrow l = 1$$

$$R = \frac{1}{l} = 1 \text{ Hence } S_n \text{ converge } if |x| \prec R \Rightarrow |x| \prec 1 \Rightarrow -1 \prec x \prec 1$$

Therefore 7 - D

If $x_1 \ge 0 \Rightarrow x_n \ge 0$ the n we have $\frac{\mathbf{w}\mathbf{w}}{2} \left(\frac{\mathbf{w}\mathbf{.touslesconcours.info}}{x_n + \frac{\mathbf{w}\mathbf{.touslesconcours.info}}{x_n} \right) \Rightarrow x_{n+1} \ge 0$

 (X_n) Is the positive terms sequence and $x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n = \frac{1}{2} \left(\frac{a}{x_n} - x_n \right)$ by resolution of the equation $X_{n+1} = X_n$ we can easily have

$$x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \Rightarrow 2x_n = \left(x_n + \frac{a}{x_n} \right) \Rightarrow x_n = \frac{a}{x_n} \Rightarrow x_n = \pm \sqrt{a} \lim_{x \to \infty} x_n = \sqrt{a}$$

Therefore 8 - B

9)
$$g(x) = x^2 f \left| \cos \frac{2\pi}{3} \right| \Rightarrow g'(x) = 2xf \left| \cos \frac{2\pi}{3} \right| - \frac{2\pi}{3} x^2 \sin \frac{2\pi}{3} f' \left| \cos \frac{2\pi}{3} \right|$$

For X=1
$$\Rightarrow$$
 g'(1) = 2f $\left(\frac{1}{2}\right) = \frac{\pi \sqrt{3}}{3} f\left(\frac{1}{2}\right) \Rightarrow$ g'(1) = 2 + $\frac{\sqrt{3}}{6} \pi$

9 - B

10)
$$f(x) = \frac{x}{x^2 + 1} \Rightarrow f'(x) = \frac{x^2 - 2x(x)}{(x^2 + 1)^2}$$

X	-∞ - 1	1+∞	>	1
f(x)			9	14 - *
$J(\lambda)$				

Therefore

<u>10– C</u>

11)
$$(x^3 + a^2y)dx + (4x + y^3)dy = 0 \Rightarrow a = -2; 2$$

<u>11– C</u>

www.touslesconcours.info

12) the general solution of the equation y''-2y'+2y=0 is on the form $y = (a\cos x + b\sin x)e^x = a\cos xe^x + b\sin xe^x$ where a and b are real numbers.

Here the two linearly functions for that solution are: $y_1 = a \sin xe^x$ and $y_2 = b \cos xe^x$ and the wronskian (W) of those two solutions is:

$$W(y_1, y_2) = \begin{vmatrix} y_1 y_2 \\ y_1' y_2' \end{vmatrix} = \begin{vmatrix} (\sin x)e^x & (\cos x)e^x \\ (\cos x + \sin x)e^x & (\cos x - \sin x)e^x \end{vmatrix} = -e^{2x}$$

For $x = \ln 2$, $W = -e^{2\ln 2} = -e^{\ln 4} = -4$ therefore question 12 has no good answer answer

19)(1,1,6);(2,-1,2);(0,1,4) Verify the equation
$$z = 2X + 3Y + 1$$

Therefore $\underline{19} - \underline{A}$
20) Since $\left| \frac{-1}{9} \right| = \left| \frac{1}{9} \prec 1 \right|$ one has $\underline{20} - \underline{A}$