Mathematics Entrance Examination For All General Education Cycle 1, Campus Bambili

Coefficient: 4 Duration: 4 hours

Exercise (4 marks)

One poses $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$ for any $n \ge 1$.

- 1. Calculate I_0 , I_1 and I_2 .
- 2. Show that for all $n \ge 2$, one has $nI_n = (n-1)I_{n-2}$.
- 3. Deduce the value of I_n for any $n \ge 1$.

Exercise (4 marks) 1. Study the continuity of the following function:

$$f(x) = \begin{cases} x^2 & \text{if } x \le 0, \\ x & \text{if } 0 < x < 2, \\ 4 - x & \text{if } x \ge 2. \end{cases}$$

2. Show the function *g* is continuous and differentiable and its derivative is continuous

$$g(x) = \begin{cases} e^{\frac{1}{x}} & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ \cos(x) - 1 & \text{if } x > 0. \end{cases}$$

Exercise (3 marks)

A discrete random variable *X* has the following probability distribution.

X = x	0	1	2	3	4
P(X = x)	0.12	p	0.4	q	0.08

Given that E(X) = 2, find

- 1. The value of p and q.
- 2. Var(X)
- 3. The mean and variance of Y = 5X + 7.

Exercise (9 marks)

Part I: (6 marks) Let f be the function defined on \mathbb{R} by $f(x) = \frac{3(x-1)^2}{3x^2+1}$ and let f(C) its curve representative in the plane brought back to an orthogonal reference mark of unit 1 cm.

- 1. Show that there exists a single triplet (a, b, c), that one will determine, such that for any real x: $f(x) = ax + b + \frac{cx}{3x^2 + 1}$.
- 2. Determine the limits of f in $+\infty$ and in $-\infty$.
- 3. Show that f is differentiable and calculate its derivative.
- 4. Draws the table of variation of f.
- 5. Show that the curve (*C*) has an asymptote oblique the line (*D*) of equation y = x 3.
- 6. Study the relative positions of (C) and (D).
- 7. Give the equation of the tangent (T) to (C) at the points of x-coordinate 0. Trace (T), (C) and (D).
- 8. Show that the curve (*C*) has a centre of symmetry.
- 9. Show that the equation f(x) = 1 has a single solution in \mathbb{R} . One notes α solution.
- 10. Give the approximative value of α to 10^{-2} near by excess.

Part II: (3 marks)

One considers the function g defined on \mathbb{R} by $g(x) = \frac{3(\sin(x)-1)}{3\sin^2(x)+1}$.

- 1. Show that g is differentiable on \mathbb{R} and calculate g'(x).
- 2. Draw the table of variation of g on $[-\pi; \pi]$.
- 3. Plot on a new drawing the curve representative of g.

Brain-Prepa