Entrance Examination, July 2011 Cycle: 1 Campus: Bambili

Series: Civil and Forestry Technical Education

Topic: MathematicsDuration: 4 hCoefficient: 2BAC F & TECH (minor)

Exercise (7 marks)

A- Let be the function defined on $]0; +\infty[$ by $f(x) = x - 2 + \frac{1}{2}\ln(x)$.

- (a) i. Calculate the limits of f in 0 and in $+\infty$.
 - ii. Calculate f'(x) and give the variation sense of f.
- (b) i. Show that the equation f(x) = 0 has a unique solution denoted α on $]0; +\infty[$. Give the approximative value of α at 10^{-2} near.
 - ii. Study the sign of f(x).
- B- Let *g* be the function defined on $[0; +\infty[$ by $g(x) = -\frac{7}{8}x^2 + x \frac{1}{4}x^2\ln(x)$ for all x > 0 and g(0) = 0.
 - (a) i. Study the continuity and the differentiation of g in 0.
 ii. Determine the limit of g in +∞.
 - (b) Let's consider g' the derivative of the function g. For all x > 0, calculate g'(x), and verify that $g'(x) = xf(\frac{1}{x})$.
 - i. Deduce the sign of g'(x), draw the variation table of g.
 - ii. Give the equations of the tangents to the curve representative (*C*) of *g* at the points of *x*-coordinates 0 and 1. Plot (*C*) and the previous tangent.

Exercise (4 marks)

Evaluate

1. $\int_0^{\sqrt{3}} x^2 \arctan(x) dx$ 2. $\int_0^1 \frac{1}{(1+x^2)^2} dx$

Exercise (3 marks)

Solve the following differential equation : $y' + y = 2\cos(x) + (x+1)e^{-x}$.

Exercise (6 marks)

Let's consider the numerical sequence (u_n) defined by $u_0 = 0$ and for all $n \in \mathbb{N}$, $v_n = \frac{2}{u_n}$ and $u_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Calculate v_0 , u_1 , v_1 , u_2 et v_2 . Give the results in the form of non-reducible fraction.
- 2. Show that (u_n) and (v_n) are bounded above by 2 and bounded below by 1.
- 3. Show that for all $n \in \mathbb{N}$, $u_{n+1} v_{n+1} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$.
- 4. Show that for all $n \in \mathbb{N}$, $u_n \ge v_n$.
- 5. Show that (u_n) is decreasing and (v_n) is increasing.
- 6. Show that for all $n \in \mathbb{N}$, $u_n v_n \le 1$. Deduce that $(u_n v_n)^2 \le u_n v_n$.
- www.touslesconcours.info (a) Show that for all $n \in \mathbb{N}$, $u_{n+1} - v_{n+1} \leq \frac{1}{4}(u_n - v_n)$. 7.
 - (b) Show that for all $n \in \mathbb{N}$, $|u_n v_n| \le \frac{1}{4^n}$.
- 8. Show that (u_n) et (v_n) converge to the same limit.