Test of specialty: Civil and Forestry Engineering First year entrance examination. Option: "F4, MEB" Session: 2009 Duration: 3H

Exercise (5 marks)

The complex plane is reported to direct orthonormal line (O, \vec{u}, \vec{v}) ; graphic unit: 2 cm.

- 1. Draw the circles whose center is *O* the radius 1 and 2. Indicate points *A*, *B* and *D* with respective affixes $\sqrt{3} + i$, $\sqrt{3} i$ and $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$.
- 2. We consider rotation R with center O and angle $\frac{\pi}{3}$ ant translation T vector with affixes 1.
 - (a) Determine affixes $Z_{A'}$ and $Z_{B'}$ of points A' and B', representative image of points A and B by rotation R.
 - (b) Determine affixes $Z_{D'}$ of point D', image of point D by the translation T.
 - (c) Indicate point A', B' and D'.
- 3. Determine an argument of the complex number $\frac{Z_{A'}-Z_{B'}}{Z_{D'}}$. Prove that line (*OD'*) is the median of triangle *OA'B'*.

Exercise (5 marks)

We consider the differential equation y'' + 5y' = 0 (*E*).

- 1. Prove that the function f, is solution of (E) if and only if function F = f' is solution of y' + 5y = 0 (E_1).
- 2. Resolve the differential equation (*E*).
- 3. For any real x, we take it that g(x) = a cos(x)+b sin(x) where a and b are reals. Determine real a and b in such a way that g checks the differential equation
 y" + 5y' = 26 cos(x) (E').
- 4. Prove that f is solution of the differential equation (E').
- 5. Determine all the solutions of the differential equation (E').
- 6. Determine the solution of (E') checking f(0) = 0 and f'(0) = 0.

Exercise (6 marks)

We consider the defined function for any real *x* not nil by $f(x) = \frac{2e^x + 3}{e^x - 1}$. The curve representative of function *f* in an orthonormal line (O, \vec{i}, \vec{j}) is call C_f .

- 1. Study the limits of f in $+\infty$ and $-\infty$.
- 2. Study the limits of f, when x turns towards 0 by superior values or by inferior values.
- 3. Deduce from the study the asymptotes s of C_f .
- 4. Calcule the derivative of f. Study the variation of f.
- 5. Prove that point $\Omega(0; -\frac{1}{2})$ is the center of symmetry of curve C_f .

Exercise (4 marks)

The exercise has 4 affirmations. Indicate for each of them if is true or false and justify your answer given that the function is defined by $f(x) = \ln(\frac{2x+1}{x-1})$.

- 1. *f* is defined on $]1;+\infty[$.
- 2. $f'(x) = -\frac{1}{(x-2)^2} \ln(\frac{2x+1}{x-1}).$
- 3. Line x = 1 is the asymptote to the representative curve of f.
- 4. The representative curve of *f* admits *a* horizontal asymptote.