Correction of entrance examination into year I; 1st cycle HTTTC Bambili Department: Fundamental sciences 2012 – 2013 Option: All technical/industrial series

Exercise

Given the complex numbers
$$z_1 = 3(-\frac{1}{2} + i\frac{\sqrt{3}}{2})$$
 and $z_2 = 3(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})$.

1. Let us give the trigonometric form of:

$$\begin{aligned} |z_1| &= \frac{3}{2}\sqrt{(1)^2 + (\sqrt{3})^2} = 3\\ \arg(z_1) &= \arctan(q(-\frac{\sqrt{3}}{2} \times 2)) = \frac{2\pi}{3}\\ \end{aligned}$$
Therefore,

$$\boxed{z_1 = 3(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})}\\ |z_2| &= \frac{3}{2}\sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = 3\\ \arg(z_2) &= \arctan(q(\frac{\sqrt{2}}{2} \times \frac{2}{\sqrt{2}})) = \frac{2\pi}{3} = \frac{\pi}{4}\\ \end{aligned}$$
Therefore,

$$\boxed{z_2 = 3(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})}\\ \frac{z_1}{z_2} &= \frac{3e^{i\frac{2\pi}{3}}}{3e^{i\frac{\pi}{4}}} = e^{i\frac{5\pi}{12}}\\ \end{aligned}$$
Therefore,

2. Let us prove that for all interger $n z^{12n}$ is a real number. We know from the above question that $z = \cos \frac{7\pi}{12} - i \sin \frac{7\pi}{12}$

$$z^{12n} = (\cos \frac{7\pi}{12} - i \sin \frac{7\pi}{12})^{12n}$$

= $\cos \frac{7\pi}{12} (12n) - i \sin \frac{7\pi}{12} (12n)$ (Moivre theorem)

Thus, for all *n* interger $z^{12n} = \cos(7\pi n) (\sin 7\pi n = 0)$

Let's give the exact values of $\cos \frac{5\pi}{12}$ and $\sin \frac{5\pi}{12}$.

From the preceding questions we have: $z = \frac{z_1}{z_2} = \cos \frac{5\pi}{12} - i \sin \frac{5\pi}{12}$. But $\cos 2(\frac{5\pi}{12}) = 2\cos^2(\frac{5\pi}{12}) - 1$, thus $\cos(\frac{5\pi}{6}) = 2\cos^2(\frac{5\pi}{12}) - 1$. Which bring us to: $\cos \frac{5\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}$ (a) One the other side, we have: $\sin \frac{5\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$ (b) Thus from (a) and (b), we obtain:

$$\cos \frac{5\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}$$
 and $\sin \frac{5\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$

Exercise

Caractestic equation $4r^2 - 4r + 1 = 0$.

The calculation of the discriminant yield to $r = \frac{1}{2}$. $f(x) = e^{\frac{x}{2}}(Ax + B)$ where *A*, *B* belonging to \mathbb{R} .

Let us determine the constants *A* and *B*. f(0) = B = 4 so B = 4

$$f'(x) = \frac{1}{2}e^{\frac{x}{2}}(Ax+B) + Ae^{\frac{x}{2}} = \left[\frac{1}{2}(Ax+B) + A\right]e^{\frac{x}{2}}$$

But f'(2) = 0; B = 4. That is $f'(2) = \frac{1}{2}(2A + 4) + A = 0$ thus A = -1. Hence Hence,

$$f(x) = e^{\frac{x}{2}}(4-x)$$

Exercise

Exercise Let us solve for (x, y) in the set of real numbers the system of equation $\begin{cases} x^2 + y^2 = 145 \\ \ln x + \ln y = \ln 72 \end{cases}$ This implies that $\begin{cases} x^2 + y^2 = 145... (1) \\ xy = 72... (2) \end{cases}$ (2) implies $x = \frac{72}{y}...(3).$ (3) into (1): $(\frac{72}{y})^2 + y^2 = 145$ i.e $y^4 - 145y^2 + 72^2 = 0$ i.e $y^4 - 145y^2 + 5184 = 0.$ That $(y^2 - 64)(y^2 - 81) = 0$ which yields to y = 8 and y = 9. Therefore

$$S = \{(9,8); (8,9)\}$$

Exercise

Given the line *L* : y = 2x + 4 and the circle: $x^2 + y^2 - 4x - 6y - 12 = 0$.

1. Let us find the points of intersection of the line with the circle

$$\begin{cases} y = 2x + 4... (1) \\ x^2 + y^2 - 4x - 6y - 12 = 0... (2) \end{cases}$$

- (1) into (2) yields $x^2 + (2x+4)^2 4x 6(2x+4) 12 = 0$ the resolution gives $x = \pm 2...(3)$. (3) into (1): for x = 2, y = 8 and for x = -2, we obtain y = 0. The points of intersection are *A*(-2, 0) and *B*(2, 8).
- 2. Let us find the length define by theses two points:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \\ = \sqrt{4^2 + 8^2} \\ = 4\sqrt{5}$$

Hence,

$$AB = 4\sqrt{5}$$

- $AB = 4\sqrt{5}$ Given the function $f(x) = (2x^2 7x + 7)e^x$ let correct answer: $D_f = \mathbb{R} =] \infty, +\infty[$ \diamond For \sim ♦ For $x \to -\infty$, we have $(2x^2 - 7x + 7)e^x \to 0$ ♦ For $x \to +\infty$, we have $(2x^2 - 7x + 7)e^x \to +\infty$ ♦ $f(-\frac{1}{2}) = (\frac{2}{4} + \frac{7}{2} + 7)e^{-\frac{1}{2}} = \frac{11}{\sqrt{e}}$ ♦ $f'(x) = (4x - 7)e^x + (2x^2 - 7x + 7)e^x = (2x^2 - 3x)e^x$ ♦ f'(x) = 0 is equivalent to $2x^2 - 3x = 0$ since $e^x \neq 0$ this yields to $x = \frac{3}{2}$ and x = 0 $\diamond f(0) = 7$ $\Rightarrow f(\frac{3}{2}) = 2e^{\frac{3}{2}}$ ♦ The function *f* is positive and increasing in $]-\infty, \frac{1}{2}]$
 - \diamond The minimum of the function *f* is 0.
 - ♦ $f(x) \ge -e^2$ for all real number *x*.

i.e we choose 3), 5) and 6) as the correct answers.