www.touslesconcours.info

THE UNIVERSALY OF DSCHARG

FACULTE D'AGRONOMIE ET DES SCIENCES AGRICOLES

FACULTY OF AGRONOMY AND AGRICULTURAL SCIENCES

B.P. 222 Tél. 3345-15-66 Dschang-Cameroun

CONCOURS COMMUN D'ENTREE AU NIVEAU I DU CYCLE DES INGENIEURS ET DU CYCLE DES TECHNICIANS SUPERIEURS EN AGROFORESTERIE AU TITRE DE L'ANNEE ACADEMIQUE 2008 - 2009

COMMON COMPETITIVE ENTRANCE EXAMINATION INTO LEVEL I OF THE ENGINEER PROGRAMME AND INTO THE FIRST YEAR OF THE SENIOR AGROFORESTERY TECHNICIANS FOR THE 2008 - 2009 ACADEMIC YEAR

AOUT/AUGUST 2008

EPREUVE / PAPER: MATHEMATIQUES / MATHEMATICS

DUREE / TIME: 4H

INSTRUCTIONS: Répondre à tou soit dans la Section A soit dans la Section B en n'utilisant qu'une seule langue tes les questions, le Français ou l'Anglais / Answer all the question in either Section A or Section B using either English or French.

SECTION A

Exercice 1: (5points)

Soit la fonction définie sur [0,2] par : $f(x) = 2xe^{(1/x)}$

- 1) Etablir le tableau de variation de f et dessiner avec soin sa courbe représentative (C) dans le plan muni d'un repère orthonormal (O, \vec{i}, \vec{j}) (l'unité sur les axes est de 5cm). (2.5pts)
- 2) Calculer $\int_{0}^{1} f(x)dx$ (1pt)
- 3) a) Montrer que, pour tout $x \in [0,1]$, $f(x) \ge 2x$ (0.5pt)
- b) Calculer, en cm^2 , l'aire A de l'ensemble des points M du plan dont les coordonnées (x, y) vérifient $0 \le x \le 1$ et $2x \le y \le f(x)$. (1pt)

Exercice 2: (4points)

Soit $(u_n)_{n\in IN}$ la suite réelle définie par sa valeur initiale $u_0 \ge 0$ et par la relation de récurrence, pour tout $n\in IN$, $u_{n+1}=\frac{u_n+3}{u_n+1}$.

- 1) Montrer que, pour tout $n \in IN$, $u_n \ge 0$. (0.5pt)
- 2) Montrer qu'il existe $r \in]0,1[$ tel que, pour tout $n \in IN$, $\left|u_{n+1} \sqrt{3}\right| \le r\left|u_n \sqrt{3}\right|$ (1.5pt)

www.touslesconcours.info

- 3) En déduire que, pour tout $n \in IN$, $|u_n \sqrt{3}| \le r'' |u_n \sqrt{3}|$ (1pt)
- 4) En déduire que la suite est convergente, et donner sa limite. (1pt)

Exercice 3: (5points)

Un chauffeur de taxi a noté le nombre de courses qu'il a faites pendant une semaine et leurs distances en km

Distance en km	[0:2]	[2;4]	[4:6]	[6:8]	[8:10]	[10:12]
Nombre de courses	17	28	47	2.3	5	5

- 1)a) Tracer le polygone des effectifs cumulés croissants (ECC) de cette série statistique (1.5pt)
 - b) En déduire la distance médiane d'une course (0.5pt)
- 2) Calculer la distance moyenne d'une course (0.5pt).
- 3) Une course est payé 500f par km. Quelle somme peut espérer gagner ce chauffeur lors d'une course (0.5pt)
- 4) Pour une course dans la ville, ce chauffeur doit suivre un itinéraire passant par les quartiers A, B, C, D et E. On suppose qu'un itinéraire passe une et une seule fois dans chacun des 5 quartiers et que les quartiers sont deux à deux connectés par des routes.
- a) Calculer la probabilité pour que C soit le deuxième quartier sur l'itinéraire (1pt)
- b) Calculer la probabilité pour que B vienne avant C sur l'itinéraire (1pt)

Exercice 4: (6points)

Les parties A et B sont indépendantes.

- A) Soit f la fonction définie sur IR (ensembles des nombres réels) part $f(x) = \sin x \sin 2x \sin 3x$
- 1) A l'aide des formules d'Euler linéariser f(x) (1pt)
- 2) Calculer l'intégrale : $I = \int_{\frac{\pi}{12}}^{\frac{\pi}{8}} f(x) dx$

On donnera la valeur exacte, puis une valeur approchée à 10 ³ près. (1.5pt)

B) On considère le polynôme défini dans l'ensemble des nombres complexes par :

$$P(z) = z^3 - 7z^2 + 19z - 13$$

- 1) Montrer que z = 1 est une solution de l'équation complexe p(z) = 0 (0.5pt)
- 2) Résoudre alors l'équation complexe p(z) = 0. (1pt)
- 3) Dans un repère orthonormal du plan, placer les points A. B. (* images des solutions de cette équation (1pt)
- 4) Déterminer la nature du triangle ABC (1pt)