REPUBLIQUE DU CAMEROUN
Paix-Travail-Patrie
MINISTERE DE L'ENSEIGNEMENT SUPERIEUR
UNIVERSITE DE YAOUNDE I

REPUBLIC OF CAMEROON
Peace-Work-Fatherland
MINISTRY OF HIGHER EDUCATION
THE UNIVERSITY OF YAOUNDE I

ECOLE NORMALE SUPERIEUR DE YAOUNDE (ENS)

CONCOURS D'ENTREE EN 1 ERE ANNEE SESSION DE 2014

Epreuve de : CHIMIE SERIE : CHIMIE

- I- Cocher la ou les bonne(s) réponse(s)
- 1. Sachant qu'un homme de 70 kg a en moyenne 5L de sang, que chaque mm³ de sang contient 5,6 millions de globules rouges et que chaque globule rouge contient 4 atomes de fer. La masse de fer correspondante est :
 - a. 2×10^8 g; b. 1.18×10^3 g; c. 1.04×10^{-8} g d. 5×10^{-7} g
- 2. L'atome H a pour rayon $r=0.529.\,10^{10} m$. combien peut-on en aligner côte à côte sur une longueur de 1cm ?
 - a. 5.10^6 ; b. 9.45×10^7 c. 6×10^{21} d. 8.4×10^4
- 3. Un polymère a pour masse molaire moyenne 87500g/mol et pour degré de polymérisation moyen environ 1400. Son analyse chimique montre qu'il contient 56,8% de chlore et 38,4% de carbone. La formule $C_xH_yCl_z$ du monomère s'écrit :
 - a. C_3H_5Cl b. C_4H_7Cl c. $C_3H_4Cl_2$ d. C_2H_3Cl
- 4. Combien y a-t-il respectivement les molécules d'hydrogène et de molécule d'oxygène dans deux molécules de $\rm H_2O_2$?
 - a. 1 et 1; b. 1 et 0; c. 0 et 1; d. 0 et 0; e. 2 et 2
- II- Soit la réaction suivante : $H_3O^+ + NO_3^- + H_2S \rightarrow NO + S + H_2O$
 - 1. Montrer à l'aide des nombres d'oxydation que c'est une réaction d'oxydoréduction.
 - 2. Indiquer l'oxydant et le réducteur.
 - 3. A l'aide des nombres d'oxydation équilibrer cette équation.

- III- L'ion hélium He⁺ ne possède qu'un électron. Ses niveaux d'énergie sont donnés par la relation $E_n=\frac{-k}{n^2}$, où n est un nombre entier positif et K une constante positive.
 - 1. On considère la transition électronique du niveau d'énergie n au niveau d'énergie p (p < n). Exprimer la variation de l'énergie de l'ion correspondant à cette transition et donner le signe de cette variation.
 - 2. Montrer que la longueur d'onde de la radiation correspondante peut se mettre sous la forme : $\frac{1}{\lambda} = R_{He^+} \left(\frac{1}{n^2} \frac{1}{p^2} \right)$, relation où R_{He^+} est une constante que l'on explicitera.
 - 3. La longueur d'onde du photon correspondant à la transition du niveau 4 au niveau 3 est égale à 469nm.
 - Calculer la valeur de la constante R_{He}+

 Montrer que E exprimée en eV peut se me
 - 4. Montrer que E_n exprimée en eV peut se mettre alors, sous la forme : $E_n=-\frac{54,4}{n^2}$. En déduire l'énergie d'ionisation de l'ion He^+ .
- IV- Afin d'illustrer la notion de solution tampon, on étudie la courbe de neutralisation de 10mL d'une solution d'acide acétique ($C_0 = 0.1M$, PKa = 4.75) par addition progressive d'une solution de soude ($C_1 = 0.1M$).

On appelle $\sigma = \frac{\text{Nombre de moles de soude ajoutée}}{\text{Nombre de moles d'acideacétique à doser}}$

- 1. Montrer que pour $0.05 < \sigma < 0.95$; PH = pKa + $\log \left(\frac{\sigma}{1-\sigma} \right)$
- 2. Calculer le PH pour $\sigma=0$ et $\sigma=1.$
- 3. Montrer que $\sigma > 1$; PH = $14 + \log \left(\frac{0,1(\sigma-1)}{\sigma+1}\right)$

V-

- 1. On étudie l'action d'une solution aqueuse de $\rm K_2S_2O_8$ sur une solution aqueuse de $\rm KI$.
 - a. Ecrire l'équation bilan équilibrée de la réaction étudiée.
 - b. Pour étudier la cinétique de la réaction, on mélange à la date t=0, un volume $V=500 \mathrm{mL}$ de la solution de $K_2S_2O_8$ de concentration $C_1=0{,}015\mathrm{M}$ avec un volume $V=500\mathrm{mL}$ de la solution KI de concentration C_2 . Calculer la concentration

molaire C_2 pour que les réactifs soient dans les proportions stœchiométriques.

2. A diverses dates, on effectue rapidement des prélèvements que l'on refroidit dans la glace fondante. On dose ensuite le diiode formé. On détermine ainsi la concentration molaire du diiode à la date t du prélèvement dans le mélange réactionnel.

t(min)	0	2	5	10	20	30	40	50	60
$[I_2]$ mmol. L^{-1}	0	0,5	1,5	2,4	3,5	4,3	5,0	5,5	5,9

- a. Comment appelle-t-on l'opération effectué avec la glace fondante ? quelle est son utilité ?
- b. Définir la vitesse volumique V(t) de formation à volume constant du diiode à la date t. donner une méthode qu'on peut utiliser pour déterminer sa valeur à $t=25\,\mathrm{min}$.
- c. Exprimer les concentrations molaires des ions sulfates et peroxodisulfates, à la date t en fonction de la concentration molaire en diode à la date t et de la concentration molaire C_1 . déterminer en mol/L, ces valeurs à la date t=25 min sachant qu'à cette date on a : $[I_2]_{25min}=3,9mmol.\,L^{-1}$.
- d. Calculer la concentration molaire C_F du diiode lorsque la réaction est terminée.

Données: Masses molaires (en g/mol); H = 1; N = 14; O = 16; P = 31; K = 39; S = 32; I = 127; Fe = 56; h = 6,63. 10^{-34} J. s; $C = 3.10^8$ m. s^{-1} ; $1eV = 1,6.10^{-19}$ J;

